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A IMPLICIT FACTORED SCHEME FOR THE COMPRESSTELE KAVIER-STONS EQUATIONS

Richard M. Bean® and R. F. Warming®
Ameg Research Center, MASA, Moflett Ficld, Califorwia

Abastract

An implicit Finice difference scheme is dewel-
oped foF the pumerical solution of the compressihle
Mawier-Stokes cquations la censervation-law form.

The algoriths is second-order-time accurabe, non-
iterative, and spatially factered. In order to
chtain an efficient factored algorithm, che spatial
cross-derivatives are evaluated explicitly. However,
the algorithm is unconditionally sgable and, although
a three=time=lgvel scheme, requires only two-time=
levels of daca storage. The algorithe Is conscruected
in a "delta" form {i.e., increments of the conserved
variables and Fluxe=s) that provides a direct deriva-
tion of the scheoe and leads to am efficient <ompu=
tational algorithm. In addition, the delca form haa
the adwantageous property of a steady-stace (1f ome
exlste)} independent of the slze of the time ACep.
Humerical results are presented for a two=dimenslonal
abeck boundary=layer interaction problem.

I1.__Introduction

Humarlcal computations baged on Che full com
pressible Navier-Stokes equation=s flrst appeared
alightly more then a decads ago. Durlng the rela-
tively brief intervening peclied, consideralle
advancement has been made In the calculation of both
tue= and three-dimensional flow flelds, A& compre-
hensive summary of finite-difference mechods and
caléulations Tor the 1965% ta 1975 period has beem
made by Pevret and Viviand! and we will not atcempk
o duplicate their review, Both expliclt and
implicit numerical methods have been swccessfully
applied to a wariecy of flow calculagions and
neichar mechod has reached 1ts full potential,
ditionally, doplicit numerical methods have Besn
praised for thelr improved stability and condemmed
for chelr large atithmecic operation counts. Heonoe
the choice of an Iepllcit algericthe lmplies that the
cimg=-gtep limie imposed by am explicit stability
bound must be significantly Less tham the time-step
limit imposed by the azcaracy bound. This situacion
commonly arises in the pumerical solution of a time
dependent aysgem of flow equations and results from
disparate characteriscic speeds and/or length scales.
(Such problema are often saild to be “sciff.™)

Recent Inteéerest in doplicit mechods has Been spurred
by the developmest of Inproved noulterative algo—
rithms =" amd ehe trend of current campuler hardwars
development to be limlted by data tramsfer apesd
rather chan the speed of arichmetic umits.

Tra-

An efflelent implicit finlpe=difference algo—
flths for the Eulerfian (inviscid) gasdynami: egua-
tions in comservation-law form was recently dewel-
oped."  The purpose of this paper 1s to extend that
algorichs £ laclude the compressible Havler-Stokes
equaticns {Section 11). The extended algorichm ia
nimiterative and retains the comservation-law Form
vhich is essential for the proper treatment of
embedde i shock waves ("shock capturimg™). The tem
potal difference approximation has been generalized
to retaln a varlety of schemes including a
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three=Llgval acheme regquiring only twe levels of data
storage. A three-level scheme allows the spatlial
crogg=derivar{ve ferma o he efficiencly fncluded im
a gpacially factored second-oider-time-accurate
algorithm without wpsetting the wncondictlomal ata-
bility of the algorithm. The development and final
algorithm make extensive use of the “delta" form
{incrementa of the conmerved varlable and flux wec-
tors) to achieve analytical sinplicity and numerical
efficiency. The delta formulation also retains the
advantageous property of & ateady=atate (if omo
exiaca] indepemdent of the time step.

In Section III we develop an implicit cime-
dependent houndary=condition schems, HWe conalder
twe phyaical problems chat provide & variety of
boundary conditions. & linear stabdlivy analvwels,
based on model two=dimensionsl convecrcive and diffu-
sive wcalar equations, is svmmarized in Section IV.
The analysils {ndicates that che factored, second-
order-accurate gcheme is unconditlonally stable, A
method for adding numerical dissipation, when
requirted, is presented in Sectiom ¥W.

fumerical examples In Section VI include the
translent developmant of Couerte flow and che oecil-
latory flow gemerated by a wall moving with sinue-
aaldal veleclty In lts own plane. The purpose of
these simple flow calculatioms was bto test cthe algo-
ritha and boundary conditlions on unsteady problems
for which the exact solutions are known. As a more
pevere Cesl of the algerichm, the numerlcal solution
of a two-dimensicnal shock-boundary-layer interac-
cion Flow was computed. The resules of che numseri=
cal examples Indicate numerical stabdlity and accw-
racy for Courant mssbers ®uch greacter Chasn wnlty.

I.‘_&!Enri:hu Devs lopment

The two—dimensionmal compressible Havler=Stokes
afaal lond can be writtén in the conservation-low
form
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whare U 18 the wector of conserved variables and
Fo G, ¥y and ¥ are [lux vectors (see Appendix for
details). A single-step temporal achenms for advancs-
img the solution af (1) is (from Ref. 3}

a, At 3 At B [ ~1
R F Y & I vy A TR Ty
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l—DI[ﬁ-I—[Jm: + fp] (2
where U0 = O{ntt) and 20" = 0D g0 The rie

differencing formula (2}, with tse appropriate
cholce of the parameters [ and 9, reproduces many
familiar two- and three-lewvel, explicic and implicie
schemes as Listed 45 Table 1. In addition it encon-
pasaes other varlations including virtwally all the
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Table 1 Fartial list of schemes comtainad

e in Eg. {3

8 F Schene Truncatlon srror
0 0 Euler, swplicie Olaes)

0 -% Leapfrog, explicit oiaed)

-;1 0 Traperoidal, isplicic oiaedy

1 0 Euler, Implicic ofac)

1 ;—' Fpoint-backward, implicic niaed)

time difference approximations for the diffusiom
equation glven by Richemyer and Morton (Bef. 6,

P. 189). Hoee that scheme {(2) is pecond=ordep=
accurate when 8 = 12 + [ and first-order-accurate
ccherwize. In the applicacions which follew we are
primafrily imtetested Idn the three-level, sccond-
order-accurate scheme 8 = 1, [ = 1/Z, In this
papet we will not comsider the explicic schemas;
bowever, the versatility of the more general class
of schemes in the analyeical development and che
algerichm programuing can be achieved with a modicum
of effort.

1f Eg. (L} is malved for alJOr (1.8., Fyx and G!I.
are moved [0 the right slde) and the resulting
expression for the cemporal derivative is Imserced
in (2}, we obrain :

a® - 1“*‘3:%[% (-a8™ 4 av,™ + av,")

+3i1_ [~a.s“+w1“+wz“}]ﬁ'% = (ren vt

3 3l £ f=1
+ 5 I:—G+H|+|.vr2'j ]+ Tep W

' L‘r[[ﬂ- - % = E)atf + m:i] {1
where P01 = pu™ly, AF" = P PO eeke. Inm
Eq. (3) and in che equaticons to Tollow, the vectior
denoted by the symbol U™ = UinAt) iz smsumed to he
a salution of the partlal-differential equatdion (1).
When o/%x and 2/3y are approximated by difference
quotients, then the symbol ® is replaced by 1.3
where x = 1w, v = jhy, apd the order aymbol .
o[fe = 172 - Elaed + Ll:i] will be dropped. The
Tﬂﬂltll‘lﬁ TI}F'I.ILE will thern be the pumerical alge=
rithm and ":L,j will denote the numerical solution.

If the spatial derivatiwes of {3} were appro=zi-
mated by fleice differences, the Flret obvious d1f=
Ficulty in solving the algebraic equations fr AU
would be the noplinwearicy of che set of equacions.
The nonlinearity is a consequence of the fact that
the fluw vector Incrementa (AFD, &G, &V0, W) are
nonlinear functions of the conserved warisbles U,

A linear equaglon wich che same temporal accuracy as
Eg. (3} can be obtaimed 1f we use the Taylor series
eXpans lag

allE (%Jn{u‘“* - 1) + oiae?)

or
aF” = Amat™ + aacdy {&a)

where A I8 the Jacobian matrix
Eg. (Al33). Likewisa

aFfol (Appendix,

46" = (a_iﬂu)"wn + 0(at?) = B"an™ + o(ac®)

(b )
wan EL L
o_ 1 1 [
|!|."|I'] (ﬁ) I'I.l.ln +(§-.u.:) ﬂ.l.l'x + u:.ﬁ.[:}
n,. M n
=PI + RUAU + OfaeT)
L] ]
={P - R AW + = (BAU)" + 0(ac?) (he)

whare R

1g the Jacoblan 3-1.I']_|"'.!|'I:II and By = 3RS 9x,
Gindlarly.

" = (e - s )" + Ti;, (saU)" + 0fae?)  (4d)

A second but perbaps less obvlows difficulty
ariges from the spatial cross-derivarive terms
¥Wyfdx and W,/ d8y. If rhese terms were treated in
the sase manner as (£} we would encowmter considerc—
able difficulcy in constructing an =fficient spa-
tially factored algorichm. Another methad of presg=
ing these cress-derivative terms s to evaluate them
explicicly. This can be dome without loss of accu-
ravy and with minimal computational effert I7 we
mobe that

m n—

i '+ oiae?)
C5

for & wnifore tiee step At. One might anticipate
that the sxplicit treatment of the crogs-derivative
terma would have an adverse effect on the oonecical
stability; howewer, the final factored foplicit
algorithe will be unconditienally stable {Sec-
tlon IV¥).

v, = av,™ 4 ogae?y e

TF the approzimations (&) and {5} are dntro=
duced in {3) we obtaln

pat [ a n A n, @ m
{' o [ aerenp® - e Zi-aesy)
; R
~ 5T fs;-'i ar™
' ar_[a PTIERI T B
- m [E -7 B ..i} + o (= + hli+1|I:,'i ]
aee [ @ n-1 3 n-1
& 'i—-—_'E [:'H'_ ':.I:I\'J:I + F [.ﬂ“l} ]

+ ].J-I-_ﬁ I:||:||'|":I s u[tﬂ-—%— E]ﬁ:zl{;—'}ﬁti rﬁt]]
(&

whire a4 8 has been introduced in Ehe coefficienc
of the cross-derivative terms for motacional conven-
Lenee. Foar second-order-accurate schemss 8
should be set equal to B, Howewsr, for first-
arder=accurate schenes (0 ¢ 172 + £} ic s consis-
tent and, for some calcslatlopns, advantageous Fo 8@
5 equal o zerc. The spatially-Ffactored form of
(6} which retains the temporal accuracy can be
easily obealned 1f we note that

fn Eq. (&) and throughout the remsipder of
thia paper, notation of the form
[—L A=-PF+ nx:l"]m“

denobes
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aae [ 3 n 1I] ..
{1+1+E[ﬁu-r+xxn -E}'ﬂ-]‘}

oae (3 .o a_ @2 u] 11|
{l+1+[ -0+ - 0y (6) ].au

= LHS{6} - wiaed) (7]

where LHS [(6) l& used te imdicate the left-hand
aide of Eg. (f). Thus a spatially factored
algorithm with the same cesporal accuracy as {3)

but Linear in AU™ 4=
ase [ 3 n_ af n] :
{1+1+£r3:“-|’+“'r:]'BIE{E}}

[ LT P I L n
{2y ;;i*”]}“'"

14

3
r.[_.:}:l

d 5 v B
Cre v+ + Ty (=GHW ) ]

m= d n-1
@v,)™ !+ o () ]

+ 0[{&—%- ATIERT a'aJ.!.:E,A:J-]

LB

In practice (B) is {impleomented by the seqoence

pat [ & R n
{1+m[ﬁ{a-rﬂ,1 -H}'I:R]}}IW"-WE{H]

{9a)

1+ 28R | o ges® - iz;— l:.li]“}alf"" = Al
{ 146 Ly = Y {5h)
™! e @ 4+ an®
{Gch

The spatial derivatives appearing in (%) are to
be approximaLed by appropriate Findlte=difference
quotients. For example, the follewing three—point
Aecond=order-accutate centtal difference approxima-
elops were wsed for the numerical computaticns
described bBelaw:

i = [
E| - —-—-..—l-l.i"-] ﬂ k n(axij {10l
ix Ehx
1.3
£ - f + f
aiE 147, 1 =
a| 1 ke .:.:E'J Eld s pia?®y  (100)

with amalogews formulae for the ¥  derivatfives.
With thres-podnt central difference spproximations,
the =~ and y-operators om the left side of (%a,b)
dach Tequire the solution of a bleck -tridiagonal
system of equations with each block having dimen-
sloms q by g, Wwhere g dis the number of components
af U (g = &4 for the two—dimensional Havier-Stokes
cquationa). However, the block-tridiagesal selueion
algorithm 18 the same as that required in the origi-
mal slgeriths" for the Sulerian {inviacid) equations.
The sdditional cesputstionsl effort generated by the
viscous terms is reflected im the ovalustion of the

coelffictlone matrices P, R, @, and & and the Flux

vectprs ¥ and W.

Although (8) congaims three time levels of data
{otl, B, n=1}, only two "lawvels" of data, U and A0,
nesd be stored for each spatial grid pelnt. Tha
computaticn of rhe spacial differences of the incre-
mental V¥, and Wy (cross-derivative terms in RHS{E}D
Tequites the "reconstrection” of i howewver, the
cost of compucing these terms is only a few percent
of the total computaticm eogC.

The Jacobian matgices A, B, R, and 5 [Eqgs. (4]}
have relatively simple clements (sce Appendls;
Egs. (A.13) through [(A.16)). 1In general the wviscous
cgelfficlenta, & and p, are functions of the tempera-
ture which is a functlop of the elemenca of U {A.T).
Congequent ly, the Jacobian matrices P and 00 hawe
quite complex =lements in the most genetal case.
For aome cafAes certain physical approximaticns can
be made that significantly simplify the calcula=
tions. For example, 1f the viscous coefficients are
changing slowly with time, the Jacobians P and 4
(e, ,d) can be adequately represented by neglecting
the deperdence of A and u en U (i.e,, Egqs. {A.17)
and (A.183)., Further sisplifications occwer Lf the
viscous coefficients are assumed to be locally cop-
agtant In which casa

P+ R, =0 {1la}

=0 + 5,. = 0 {11k}
and ehe LAS (%a,b) centsaln only the Jscobians A, B,
R, and 5. Hote that the steady-state sclutlom {1if
one exlsbs) , which Forfs part of the RAS (&), I8 mot
affected by the assumptions made in computing the
Jacohiang .

LLI. Boundary Conditions

The application of the algorichm (%) ac the
boundaries of the computation region cam be conven-
ienlly eaplained by slepping thiough the sequance of
operations required to advance the solution from
Jevel n Eo oFl, Twa phyelcal preblems, which
provide a variety of bhoundary conditions, are con-
gldered im the fFolloving discussion. For beth prob=
lema the spatial computaticonal domain is divided
imto a rectangular Carteslan grid = = i4x, ¥ = jhvy.

The Firse problem (Fig. la) i= & Conette flow
where the upper amd lower boundaries () = 1, J) are
rigld walls which mav have nonzero velocity in their
own plane, The other boundaries (i = 1, I) afe pre=
scribed by spatially pericdic (period = £} boundary
conditions,

The secomd problem (Fig. 1b}, a shock-boundary=
layer incteraccion, has a supersenic flow Into che
reglom 4 =1, § = 1, J. The flat plate (j = 1.

i = IL ta I} 16 .. 1gid wall amd ahesd of che lead-
Ing edge €] = 1, £ = ¥ to IL-1) A y-symetry condi-
cien s applied. The wpper bowndary condicions

{} = J) are chodsen to generate the shock-wave Ehat
impinges om the flac plate. Ahead af the shock
()= J, 1 =1¢ea I8 =1) the supersonic inflew com-
ditions are choses and bebind the shock (] = T,

i =15 to 1) the post-shock conditions are sex. At
che final boundary {1 = 1, § = 1 ko J) the autflow
conditions are parabolic im the boundary layer and
hyperbolle In the freestream which permit extrapola=
tion of data from the interior o che beusdary.
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[a} Couerte [low mesh.

¥

LT
(b} Shock boundary layer mesh.

Fig. 1 Ipdexing of compucational mesh for Flow

caloulacions.

Hext we consd ler the detalls of the mumerdcal
applicatlion of th boundary copditiona. Fleab, we
consider the explicit portion of the boapdary comdi-
tlous and then the implicit porelon.

4

Explicit Fortion

At the start of the caleulatfion (£ = nfr = 0}
Wi assumg Chat a complete descriptior .. the initial
flow Field is provided at each mesh point. In gen=
eral, the algorichm (%) is & three=lewel scheme apd
two levels of starting data are required. However,
1f two lewels of imdtlal data are nat available, che
ppcond lewel cam be chtained by applying the algo—
rithm (2} as a two—level schems for ome stepi [or
example, B = £ = (.

The firsc epcounter with the boundary conditions
orcurs in the evaluation of the “steady-state" por=
clen of the right aide of (8); that is, .

)

=1

I (12}

(-¥"+ '.',"Hrz"":] + % (-c"+w," +W,")
Expression {12) i= called the steady=scate porcion
becaizas chis guasticy will be egual to zero 1f the
solution converges {i.e., &U" = D). The aparial
accuracy of this pertion of the calculation thus
determines the spatial accuracy cf the steady=srace
aplugdion.

Lat was begin with the treatment of a rigid
boundary (Fig. la. j = 1}. LIf three-poine cantral
differences are used to approximate 8f3x and 30y
im (12}, the beundary § = 1 1is encowntered o the
8f#y approximation and we requlre

(-a" + u," + w") (13)

whare, for slmplicity, the 1 [ndex i= SUPR e sed ,
Since u and v are prescribed on the boundary

(Bjumy = 0y W53 = 0) and T can be obtained from
the condition at the wall (for example by extrapola-
tion from the flew Fleld at an adiabatis wall,

iTfay = 00, the W part of (13) (see Appendiz,

Eq. 1w 5)) is easlly obtained by waing one—sided
diffe ence approximations for {duf@y)y.; and
CEvfaytgmyi for example,

-3u|_+-f||.|.? = Uy

By ! 3
Ty + ofay?)

EL ju1

{14}

The no-slip bowndary condition {"-Fj-'l =0, vj=1 = 1
simplifies the computation of Gyep, Eg. (ASX), ta
the evaluation of ij=13 thar is,

o
0
G - {15}
m]
. P
1 =1
We use the nornal momentum eguation
a3 fem) 3 [n? 3 | fre, 2
Et+az(u)+i}'(n +') B':["(il+ar)]
] dv . du
By [U.'r.hll EE-I- i ER]FD (16}

with the no=slip boundary condiciomn Ifu.j_] = Wja] = o)
to ochtain
Y, 3 f 2a}y, 2 v
(l_,. 3?) + e (1 E:H) + ay E.'.‘I'Iu] ‘}r]}:l-’

3p -3
E] k]
¥ =1 3

(L7
If 3pfay s spproximaced by & cne-sided difference
quotient, for e=zasple

]

Ly |
T + ofey)

Ip

- (1B}

3=1

aitd the rvight side of (17} is svaluated by an appre-
priate difference approalmacien (u and v are koown
at all grid points),; then we obtaim am explicit
expression for p on the boundary {(py). If the
rlgid wall were moving in iis owm plane

{l.lj-j = uglt), Vial = 0) che analysis would proceasd
as before except with the proper prescriprion of
Bim1~ The upper bousdary (] = J) of the Coustte
I"I.w problem is didentical in teeatment to the lowaer
bowndary. At the sthker boundaries, 1 = 1, 1 = I,
spatially pericdic boundary comditicns are applied,
that iz, Uy = 1.!'2.,_ 1.1] = Ug.q-

The supersosnic inflow boundary comdltions for
the shock-Soundary-layer problem (Fig. lb) were
Fized at free-stream values Uge) = UVfirpe prreswm-
These sone Fres-stream conditions were applied at
the upper boundary ahead of the shock (f = J, 4 = 1
go 15 = 1}. The post-shock conditions were flzed at
the remaining wpper boundary poiots (f = J, 1 = IS
ko I). GSince the character of the flow in the
boundary layer faf dowmatream is parabalic and the
flow 1= the free stream hyperbolic {supersenic), the
putflie conditions were obtained by almple

- ; Y e :
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extrapolacior, Uy = Uy-y. The low-order extrapola—
tien is used since mo inflwence should be felc
upatresn ln the reglon of the shock-boundary—layer
interaction. The boundary condicioms upstream of
the plate leading edpe ¢ = 1, 4 = 1 ko 1L - 17 ware
chtained from the [low symselry conditfiens about the
=axie,

Bu
3y

o1

- . -
iy i

- :'
gup Plyay =i

3=

and appropriate ope=sided difference approximacionas
for example, (18).

Impiicit Portion

The préevious discussion dealt with the ageady-
gtate portiom of the calculagion. The treatment at
the boundaries was identical to chat one might u=e
for an explicit nusarical schene, We consider now
the remainder of Lhe algorithm and the effect of the
laplicit algerithm on the treatment of the boundary
conditions.

After the compuragion of the RES (B) we proceed
£o the implicit x-sweep {Eq. {9a)). Three-point
ceptral difference approximations for choe derlva=
tlves d/dx and 373w produce a syeten of block-
tridiagonal equatioos

-

L, A0, + M "+ M2y, =B« 1=2, 71
(197

where L, M, and B are 44 matrdces. The paricdic

boyndary condition for the Cowatte Flow (Up = U,
Uy = Wpoq]) applied o (19) produces che peris ‘e
block-tridiagonal system

‘H.:I-. H! 1, EUE‘- FH} a
o k]
L, My f, av, H,
: - i B (20
"
Ly Mz By Q]2Ur; Bz
L]
L"I Ll-: HI_— u:l‘- 1 LlI-:I- "

Although abowt twice as esstly in computer Blme as
the nonperiodic block-tridiagenal solwers, the sclu—
tion algarithms for (20} are available.” For the
shock houirdary-layer problem Eq. {19} is scill
applicable; however, the Boundary conditions are

Uy = Usree seream and Up = Up.; which produce the
syatem

"-"'1 Hy n1r1* b I-H? 9

Lz W B, Ly Hy
Ly-3 Hp_p Wy, AU, Hyoy

; Lp-z g +dgflang ] [Bg

{21)

Afrer thoe computation of &U* ap the interior
mesh polnts we are ready for the dmplicic y=awéep
(Fg. [953). Again we sse (hree-point central dif=
ference approxipations to the spatial derivatives
and, for simplicicy, we assume locally congtant wis—
coug coefficients (LIB) to ohtainm

Bkt _|]; n __d @ n
1+r.( Fay Yi-1 EF"’J—1]]'3”3-1

BAE 2 n
+ (1 o vy A sjn}auj

Bat [ 1 _m coo e o noo_ ]
‘[ul: (n:r By " 07 5]*])]“1-!1 &y

j=2,3-1 {22)

For the two sanple problems [(Fig. 1] we encoun-
ter o rigld wall in the ¥ sweep. For example, in
the Couette flow problem the applicaticn of (22) at
i =2 fincroduces the quantity

AL P RSO | KR ! n , 0
Hy = [1+|; { g M TR )]‘“'

which regquires daca at the rigld boundary § = L.
If we introduce the no-slip beundary comditions

(23]

fup = O3y vy = @) inte B, 3, and U (Eqa. (A.14},
(A.16), and {A.1)}
= - [k -
o o -1 ﬂ fa o
oo o0 o D o
B,"ou," - - -
B0 0 (1-y§] © iy - 1)de,”
I
e
__}- L]
-l} 0 : = o - L"'EI - - 0 E
2
- {24}
: o 0 0 a tp "
il 5 0 a 0
sjnaulﬂ - i

i o '}
L1
=
L1}
&, bp fa, 3™
T
| Ll ] 1 l

Hence, we meed approximations for [(y - 1:|.|:m':']i_]
and  [(kfcyd(-etpfo? + -5E|"PJ"]J-1 ag functions of
the increments of che comservabive wariable ac the
latetior pointe § = 2,3, Hote that

n{-&]n - [& he = F‘} np]“ + o{ar?) (26}
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and at an adiabatic wall fi'l'.l'ﬂ-:.-'gja = O} with
w-slip conditions {uje; = ¥im1 ® ) we obtain from

fa.7h
ar 1 el
gy B 5 o)

If we use a one-sided J-point difference Gpprowima-—
cion for che nermsal derfvative

Lo RO RO ON R

(28}
and use (26} amd (27) we n:;htn.:n
n n
= %Lﬁ(% ha = F—::f EIP}
1= - i J=z
: n
. _ 4
(p se - & an}j_!] (293

which provides the deslred expression for the right
aide of (25}, Hext we seak an approximacion of the
rlght alde ef {24). A relation between pressure and
irtarnal anargy at che rigld wall cam be chtalined
from [&.8) .

= {
3=t

(2%

1 L]
= fe - &
(ﬂ’ F”'}

ap

ol (30)

el
= [y = 1)
| gu

and betwean pressure and the velocities from the
nornal momestum equatios at che wall, Eg. (1&). 1In
Ehe present calculations we have neglected the
crosas-derivative terms In (16} to awald the cowpling
with adjacent [ mesgh polnks at the boundary. A
mare accurate approach, which alsa avoelds che
ITeplicic coupllng of Wdiacent boundary points, would
ke to treat the cross-derivacive cerme axpliclicly
(i.e., &8 functions of &0 1}, This later approxi-
mation was nop tesced in che prasent calculatlona
and we proceed by neglecting the cross-derdvative
terms; that is,

dp

3y (31)

2
= (L4 2u) aiyfig}

Agailn we use three-point one—sided difference approx-
fmaciona for the spaclal dervivarives and conbine
(30) and (31) to obtals

i=1

- 1] [ f
'EJEF I-30e," + 4e® - fe,"]

. Grz [H : ;.,{] ”]+ otay?)  (32)

Hote that

) - (3 o) o

amml recall that

(33)

n= 0 4t the de=glip boundary

{i.-@.,; ng = 0¥ r]-.ua, (3) and (33} provide the
expression for .!ne required in (2&). I we pow
combine (230, flﬁ} (253, (2%), (31}, and (33) we
can write

LI+ B i | a a o ¢ 0
o o a 0 a o o i
Hy = AUE“ + an.®
o 1
31 Sy Cay A 0 dyy dy,
cy; 0 0 gy, dy, 9 D0 4,
(34
or
n L]
Hy = Gty + D8l (35)
where oy and dyy represent the nonzero elements

af the “correction” matrices C, and D,. Similar
conslderations can t# Included at the opper houndary

(4 = Ty. Finally, for the Coustte problem the
Implicit y-sweep requires che solution of che
block=tridiagonal system
[tn+cy," (wem) "
n n n
Ly My By, ag,"
(1] m bl
I'J—ﬂ fj-? I"lxl-l M'.l—?
n
L {l.+lill_.| 2 lf'H-lrE'!l -1 Eu..l-l.
CUA
av,*
= . {36}
ﬂuj—?
ﬁuj_l

The remaining boundary conditions for the shock
boandary-layer problem sce conbinations of Lhess
discugsed abows and, therefore, are not presented 1o
detail.

I¥. Stabllicy

The numerical stability of the alporithm (B)
was Investipated by applying it to the model linear
gealar conweective (hyperbolis) equacion

£ Hiik i
e = —_— 1
R Ty 0 (3%}
and tha diffusive {p:.l:-lhu-lll:] equat Laa

32 32 32 a?u

o TE by O (34)
subjack ta

a,c >0, b2 = Lac L3%)

The inequalicies (39 are the conditloms ander which
{38) i= Plflhnlic.
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The details of che analysis are presented Io
Bef. 5. For amample, it is shown that the factored
pecond-order- temporal=accurate algorithm, that is,

= % + £ {11)]
applied co (37}
(1 + ::'E £y —-—:_'I](l + _1_Bf-tl; oy %}mn

is wmcondiclonally acable for £ = 0, Similarly it
iz shown that when the algorithm is applied to {38}

(- ¥+ 30)C -

FLn
s

()

Ehe algorithm 1s wmcoenditiomally stable for the more
atringent condicion

T3
™

8Ae
i+%

_aht
1+t

] ERT
il g

thaw oW

PN S

1+E (42

i+ 203
Ts ¢ z 4 %Y
or
£z 0,35 (54}

In the nemerical exasples considered below we chose
the l=point=backward scheme (Table L), £ = 172,
when second-opder-témporal accuracy was desired.

V. Added Higher=Order Dissipation

In our applications with central spatial differ-
ence Approximations, we have foumd 1t necessary to
add dissipative terms to dasp the short wawe lengthsa.
He chose fourth-order terms which waee appended to
the alpocithm (9} as follows:

[ + T | aerrrg” - % EE]-“]}M‘ )
- RHS(E) - ﬁ? T asa)
[1 + '1LiEE 3 (B-0+sp” 3-2-,2; lsr“l}aﬂ
- au* - T"ﬁ % i'—u.. (0" + au™y  (45B)
! = ™ 4 ap (45}

The dissipative terms are of higher order and conse-
quently dr not disrupt che formal accuracy of the
B thod.  For che calculacions, che fourth deriva-

tives In (45} wers roplaced by the finite=-difference
approvimacions

- 4T

alll-
ﬁfﬁ;uljnuﬂ_hj i+l.._1+wi._j

= &4 (ddha)

11, ¥ Vg
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#rcording to a linear von Hewmann scabdlicy analy-
gie, the spable range of dissgipatiwe coefficients,
by Affd wy, 18 0 2w £ 1+ X5, At mesh polnta adja-
cent to rigld boundaries l:iz.g;.+ j =2, Fig. la) the
data required for mesh polnts "outslde" the boundary
{1_-:., g0 Eq. [46b)) were obtained by settimg
Pi,o ™ Pf,2s Wy n = —Uj as ¥f g = =¥j 5. and

oy 0= @4 o. Al mesh points 4d1acent "ta nonrigtd
'hnl.mdu.r:l.:u. the dissipative coefficients were set
eqieal [0 zera.

. -y (465)

Vi. HNumerfical Results

Cosetie Flow

Tha caleulaticon of enateady [low between tue
infinite .parallel walls was chosen as an initial
tesc of the temporal am well as spaclal Accuracy and
stabllity of the numerical algorithm and bowndary
comditions. A éxl] wpiform grid (I = &, J = 11}
with periodic spatial boundary comditions im the
w=direction (Fig. la) was used in the caleulations.
Im the first calculation {'Elg. 2] the flow field and
upper boundary were Ialtially at rest and the lower
boundary had initial weloccity in its own plane.
The tranaleént development of the velocity profile
between the two walls i{s shown in Fig. 2. The exact
{incompressible) solution (see, @.g., Schllchting®)
is shown for comparlscn. The Courant number for
this caleulacion was approximately one. If larger
Courant numbers are used (i.e., greacer A&4t), tha
cragndlent sblutlons devidte from the sxact solutlon;
however, the correct sceady=grate solution was
reached in & smaller number of time steps = for a
Courant mumber of 100 the steady=-state salutlon sas
abtalned afcer 10 tilme steps.

The pexl example was chosen to show that accu-
Tare I:Iq-dl.'.:ll aolutlona can be obtalned a* Courant
nunbers much greater than umity. In this cslcula=
tion the lower wall was moving with sinusoidal
velociey in its own plame. The time step At
was choaen as 1S40 of the period of the oscillation,

T g <&
e HEENE
1 b o HUMERICAL
't‘,. e x"i -:-u:lu.lmnm;' 1
| [ & '.i:l"' I | 1
- - - L i —
] "h: ﬂf‘f‘“-._m
wh +""\. - B - - |
R R N
| bdo Tl [l ]
_El:;.—r _‘::‘F ::"'—T“‘*—:_
8 e
|
B a2 A ]
uluy

Fig. 2 Flow formation in Coustte mofion:

u, = 100 Fr/sec, W= 0, Ix107" fe, At =0,116%1070 goc,
t = mAt; dndtial data: p = u.mnn 1b mec? fFEY,

T = 520.7 "R, b = 0.378x107% 1b sec/ft?, Rey, - 6.2,
Mach pumbsr = 0,00,

o
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Comparisren is made with the exact (incompressible)
analytical sclution® in Fig. 3. Although the
Courang pumber for the calculatlon was 10, Lhe
Rgr. cnent with the analytical snolution is good For
the entire period af paclllation,

= WUMERBGAL
——- SCHLACH T &
T T —y—
1 LR
L] i i":l'!:'l
il
; 7T
’r 1|
#h i
Fl };_H
FM, | 38 L2
21 " i
¥ b, 260 b
Il LY ¢ Y
1 uh.— = |

-G-8 -8 -4-3 0 2 & & B 1D
iy

Fig: 3 Welocity discribution (after cramsient
decay) between a moving wall, uwil,t) = u. sin{ut),
and & ataclomary wall, wih,th = 01w, = 100 ftfsec,
bho= 0.1=D07% fE, At = 0.116=1077 sec, t = mAti
inicial data: p = 0.00234 1b sec?/ft", T = 527.7° R,
u o= 0. 378=107% 1b sec/fr?, w = Znfedit, Rey = 6.2,
Mach fumber = 0,09,

Shock-Houndary-Layer Interactiom

The aecond problem, Figs. lb amd &, presentcs a
more gevere tegk [or the algorithn,. A sghock wave
interacca wigh che boundary layer that develops on
the [lak plate. IF the shock wave has aulf ficient
atrength it will cavee boumdary-layer separation

{as depicted in Fig. &).
H'EFLE7
SHOCHE
COMPRESSION

WAVES

MCIDEMT SHOCH

Eafam g
FEW

LE&DING
FREEGITN
ELEE GHOON il
[1 t e
SEFARATION REATTACHMWENT
POIKT POINT

Fig. & GSkatch of shock I:nu.u-dn.f;p—lqner interactlion.,

The shock amgle 4 (Fig. 1b) was set squal Eo
32.6" by proper selection of the post-shock boundary
conditions. The parameters IL =5 amd IS5 = 2
were selected so chat :3‘-&1 = .16 fr. The free-
atrean Mach nomber was 2.0 amd the Beyvoolds pumber
Re, = 0,196410F,

The computaticonal mesh coitalne ¥1=45 mech
points (I = 32, J = 45} wvirh wniform wesh incTrements
in the x-coordinaee (&= = 0.01 fe) and an exponen-
clally stretched mesh in the y-coordinate for
j =1 eo 33 and uniform mesh spacing for § = 34 o

&5. The me* Increments in the y-coordinate waried
from Aygy, 0.0000L0 Er at the plate to

B¥pas = 000639 ft at § = 33 @8 determined by the
formalae

. by, N33-1)43z
by, = ay___ [—— 1<4:z33

=] |!-:ru

.ﬁyj-hy I£js3=1

In general, the seleccion of ‘the grid spacing
dopends on The Reynolds number and che Mach number.?

Hé befporal results were avallable For compari-
son; cherefore, the stemly-state wall-shear welccity
amd pressore distribuotions are compared (Fig. 5)
with those of MacCormack and Baldwin!® who used the
rapid-golver method of MacCormack.? sSomiiar agree-
ment wias abtafsed in cosparisons of weloeity pre-
files throogh the boundary layer (Fig. B).

20

18
—— PRESTNT CALCULATHIMN (WEPLICIT)

§ === MpeCORMACK BALDWIN { FfPi D 500 0
e 1O
-
'--—-'. L
—
2|E 5
kL
ni TED
l‘ 140
§20 i 1 i i i -
] 08 ] A% an I5 ]
[b) Pressure dlbt;ihutinn at wall.
Fig. 5§ Comparison of computaticnal results Tor

shock-boundary-layer Enteraction problem by dmplicit
[presant calculaticn) and rapid solver I:I'hcﬂﬂrnltllg
and MacCormack and Baldwin!?) methods. = 2.0,

LE— 0.296°10%, meyy = 0.16 fr, 32445 mesh podnes.
& —— PRESENT CALCULATHNS {IMPLICIT]
e oo EaECOPMACE BALDWYS | LAFD SOLVER]

o2 i
oo i

=

T

=¥

£l
0.
-
]

w w0 s

Fig. & Welocis, prefiles through the boundary layer
for shack=bounda y-layer interaction: (a) upstream
of separation; (b} at oawlounm separation; amd

fc) dosmarrgam of separation.
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A&ll caleulacions were dome om a CDC 7600 with
an FTH &.% lewel 414 compller and requived only
small core stovage (for grids wp to 64x50). Basead
om the shock=boumndary-Llayer caloculations, che com
putational tiwe (CF seconds) per mesh point per time
step, that is,

_ . . Craeconds
I = J = pusber of time gtepa

T =

WAl Tyxg = n‘i.ﬁaltl_"' sic which cospares [avorably
with the calculation cime for che foviscid Eulerian
Bpilal Lona ™ g™ 3. 2x10"% sec. The calculations for
the shock-boundary=layer equations requited less
than LOO time steps te reach a steady state and the
maximun Courant pusbey was approximacely 170,

Vil. Concluoding Hemarks

The distingui-hing Features of the second=order
method described hereln ioclude the retention of the
congerval ion=1aw Form, & direce derivacion of the
basis scheme, the simplicicy of the computacicnal
ulporithm, the use of generalized time differencing,
the "delta" formulation, and the secoml-order treat-
mant of the mixed spatial derivacives.

The implicic alporithm and pumerical examples
considered in this paper ara Limited to a Cartesian
coordinate system with 4 oniform mesh or an exponén=
tially expanded mesh in ome direction. However,
under an arbitrary time-dependent coordinate trans—
formation, Eq. {1) retains the same congervation
form.!! Extenslons of the {Cartesian) implicit
scheme described above hawe recently been made for
both imviscid!?+1? and vwiscous!? conpressible flows
with arbitrary {two=dimensional) bady peametries.

APPENDIX

The vecter af conserved wariables, O, amd [lux ve

ccors of Eg, {1) are

f ] 5Lt} 2] aw o
Fu m pu + p imffal +p oy ono [a.1)
U= - : F= - s L= = (A. 2}
av o i s av? + (m”fpd+p (a.7%)
B @ [o+ piu o+ plafo [+ plw fe+plnfo
]
F.I:u“ + 1.',,_! + iy
ﬂ] + vl = (A4}
utﬂx + ur}
-|.|1.Ifl.l.:l,. + 1.rI:| + J.hl:u.! + '.-r} & ?"""'":r: ¥ kr“
0
[T PR RPN
r ¥ X
TR A {h, %)
hiw, + -ur:lr] + Euv!_
;uu(\.ll + u,] + hviu, # "r_'u"] + Epw? + L"i‘r‘

whore w, = Bufix, etc.

aml total emergy per unit wolume e. In addiclon

A= pu oy

k is the coefficient of heat conductivity, A and u
functions of che temperature, T

1
T @ e
0y

-+

vhere

where v 1s the ratio af specific heacs.

The primitive variables are demsity, o; velocity components, u aml v pressuce, pi

no= ow (A, h)

are the viscous coefficlents, which are in general

(pu? # ;wl:] (h.TY

Cy 18 the specific heat at constant volume. The pressure, p, ia giwen by the equation of state

p= iy - 1}[: —% {ou® + n'.rzi

(&.B)
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The veckors ¥, Wy, Wy, and Wy can be resritten io terms

o

YV, =
' -2
e oay = neyd

o
ot Enl‘l.f Myl
u™ ¥ (pm,, = L
1]
[Pt (ong = npg,l

ao i pmy - mo,)

a

|a|:'i'{|:'l»3r - Inj.fl

Althongh expressions (A.%) = (A-12) are more comples than (A4}

(0 + Zpde™ lomy - opy)

Ul + 2 = ke mw Hon, - o ) + (u = Kle e Hony - nog) + (kicy o P loe, = en,)

L"m_zlﬂﬂ-_u - 0oy) + ump ™2 [pm:l, - eyl

L‘-m"'innh = mo,) * ymp” {poy - npyd

(3 + ih}p'ifnn], = Mgl

(h + 2u = kfeyne Hany - npyd + (u - kiegdm Hpmy = my) + (kfcyda Zlney - eny)

af the conservatlve variables am

(4. 9)

(A. 1D

1

{&.11]

[4.1%)

and (A.5), chey are used oaly In the anda=

lytical evalustion of the Jacchlans and are mot computed numerlcally,

The Jacobian matrices A, B, B, and 5 (Eqs. (&)} are

-t
a | -1 I 0 | o T
5 _ | I I
3_1|‘I' ut 1—;,-1. vE | {r = Jju | {g = 1w | 1 =5
ey | I I (A.13)
uv - =y ]
I I I
I:_u"" (1 = phufud + v | - Il;i # 1-';—-]; (3 + w?) | iy = Luw | -yo
0 | 0 | -1 | @
uv | - | -u | Q
B - | | | (A.18}
gyl ie |y~ | (y - 3 1=+
I K 5 |
15 4 - vl + v |ty - D | - LA LS R vt e a?) |
0 ] 0 | 0 | o
=(k + 2pdu | (3 + 2u} | 0 | n
R=p"? I | | {a.15)
o | . L
~(h 4 2u - kiedu? - fu - Kegdv? - (Rlegdlefo) | (A + Zu = kieghu | (v = kieg}y | ®iey
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0

—p

={i + 2ulw

L—tl + 2w - Kie vl = (4 - kleu?® - (kledlefp) | o - kiedo | 00+ 2u = kieydv | kiey

0 [ 0

I

I ] ! o
| (A.16}
| i}

i} i {4 + M)

|
L
|
|
|

and, if we neglect the dependence of 1 apd » on ot {mai Sectilon II), the Jacobian's= P and 0 coabined
with Ry and 5., Eq. (%), are
L -
0 | 0o | o | o
—ualk * 2|.|:I:Ili I A+ Juihy 0 I a
DTS I . I (A.17)
—Wiy | n | By | i}
—o? (L + Pu)y - viuy | wldo# Zudy | vy | EIJ
ane
[ 0 | o | 0 | o]
I I I
=y by Qa [1]
- + 5, = p”1 I ! I {A.18)
h =5l E'ufl], | i | {3+ ELIII}. | L]
L-vB(a v Zudy = vl | uay | vl o+ ndy | 0
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