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Implicit Finite-Difference Simulation of Flow about
Arbitrary Two-Dimensional Geometries

Joseph L. Steger*
NASA Ames Research Center, Moffett Field, Calif.

Finite-difference procedures are used to solve either the Euler equations or the ‘‘thin-layer”’ Navier-Stokes
equations subject to arbitrary boundary conditions. An automatic grid generation program is employed, and
because an implicit finite-difference algorithm for the flow equations is used, time steps are not severely limited
when grid points are finely distributed. Computational efficiency and compatibility to vectorized computer
processors is maintained by use of approximate factorization techniques. Computed results for both inviscid and
viscous flow about airfoils are described and compared to viscous known solutions.

I. Imtroduction

HE current work is mainly concerned with two of the

ingredients of computational fluid dynamics—the
blending of an implicit finite-difference scheme with trans-
formations that permit use of automatic grid generation
techniques. The combination produces what should prove to
be a good recipe for many practical flow calculations. Results
in this paper are restricted to flow about airfoils, but the basic
core routines apply to a variety of problems (e.g., internal
flows, rotating machinery), and the extension of the
algorithms to three dimensions is reasonably straightforward.

II. Motivations

In any numerical simulation the choice of numerical
algorithm and flowfield model is dictated by considerations of
computer cost, the type of problem being solved, the flow
regime, and whether a very precise solution or an approximate
solution is needed. These dictates have spawned a vast array
of simulation techniques (e.g., finite differences, finite
elements, particle in cell, integral methods), the use of special
approximations (e.g., incompressible or compressible, steady
or unsteady, rotational or irrotational, boundary-layer or
Navier-Stokes), and a variety of ways to impose geometric
boundaries (e.g., thin airfoil theory, special boundary
operators, curvilinear and conformal coordinates, finite
elements).

It seems that, even if one has a definite problem to solve, it
can be difficult or impossible to select a best or most efficient
numerical method—for example, a procedure that runs very
efficiently on a conventional serial computer processor may
run poorly on a particular vector computer processor.
However, as computer processors and numerical algorithms
continue to improve, it is natural to try to develop general
simulation routines that fit geometric boundaries exactly and
make few physical approximations. The usual justification
for a quite general simulation routine is that while it may be
costly in comparison to a simplified algorithm, it can be
readily adapted to a large class of problems. As a result a
given solution might initially be obtained in fewer man hours,
and of course, detailed solutions are needed as checkpoints
for less expensive but more approximate solutions. A more
pragmatic justification for a general routine is the suspicion
that it may be easier in the long run to make a general
program efficient than to make an efficient program more
general.
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Inadequate knowledge of turbulence modeling and lack of a
sufficiently powerful computer to handle three dimensions
insure the continued use of approximate methods, but various
developments have come to the forefront to make general
formulations more attractive. These are more versatile grid
generation routines,’3 general transformations of the
equations that maintain strong conservative form,*° and
reliable implicit finite-difference schemes..!%13

The thrust of the current work is toward combining general
transformations, grid generation techniques, and implicit
algorithms into a viable and versatile flow program. The use
of implicit schemes removes much of the stiffness problem
associated with locally refined grids, especially viscous grids,
and of course, is ideally suited to the viscous terms them-
selves. Transformations and grid generation schemes permit
arbitrary geometries to be solved by conventional finite-
difference methods and permit study of various unsteady
motions as well. Thus, considerable flexibility exists along
with the promise that the core programs developed can be
readily adapted to a variety of problems without considerable
special tailoring.

The following sections detail the transformed equations,
grid generation routines, and the implicit schemes. Finally, a
variety of flowfields about airfoils are solved and are used to
verify the numerical algorithm and illustrate its versatility.

HI. Transformation of Governing Equations
The strong conservation law form of the Navier-Stokes
equations in Cartesian coordinates can be written in non-
dimensional form as (see Peyret and Viviand '#):

a,q+8XE+3yF=Rg’(6XR+ayS) (1)
where
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with

T =N+ 2u U+ A0, 7, =p(U, +0y)

Tyy= (N+2u) v, +Nu,

Ry=ur +vr,+«P7 (y=1) ~13,a°

Sy=ury, +ur,, +xP7l(y—1) ~’aya2
and

p=(y—1)[e—0.5p(u? +0v?)] 03]

where p is the pressure, a is the sound speed, and v is taken as
—(2/3)u, the Stokes’ hypothesis. Note that while the non-
dimensional reference quantities are arbitrary, the Reynolds’
number (R,) and Prandtl number (P,) used in Eq. (1) are
defined in terms of those reference values.

If new independent variables are introduced, a strong
conservation law form of Eq. (1) can be maintained as shown,
for example, by Lapidus,* Viviand,® and Vinokur?® (see also

the related finite volume methods’®). Subject to the general
transformation

E=E(xnt)y n=n(xyt), 7=t (3)
the equations can be written (see Refs. 5 and 14) as
3,G+03: E+9,F=R;1(3,[J~" (£, R+E,5)]
+3,[7 7 (1, R+1,8)]) C)]
where
d=q/J, E=(£,g+§E+E,F)/),
F=(nq+n.E+n,F)/J
and
T = (A+2u) (éxug +n.,) +NE, v +,0,)

etc., where derivatives such as u, are expanded by chain rule,
u,=§,u; +n,u4,. Here Jis the transformation Jacobian

J=£x71y_gyn,\':I/(xEy-q—xr,yz) (5)

The metrics £,,§&,, etc., are easily formed from the
derivatives of x,, x;, etc., using the relations

Ex=Jyy &=—Ix, &=-—xb.-08 (62)
Ne=—JIye, m=Jxy, 1,=—X0.—Y.9, (6b)

It is also convenient to define the velocities
U=§, +Eu+bv=E(u—x)+§,(v—y;) (72)
V=n,‘+nxu+nyv=nx(u—x1)+ny(v—y,) ' (7b)
which are the so-called contravariant velocities along the £

and y coordinates. Using these defined velocities, £ and F can
be written in the compact form

oU oV

N ouU+§,p . puV+qp

E=J"1 , F=J-1 8)
ovU+§&,p pvV+9,p
(e+pYU—~&,p (e+p)V—n,p
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Note that once U and V¥ are formed, the flux vectors £ and F
are not much more complex than E and F.

One does not generally have sufficient computer power to
resolve the viscous terms except in a thin layer near the body;
consequently, a thin-layer approximation is used here.
Viscous terms in £, which is the direction along the body (see
Fig. 1), are neglected and only terms in % are retained. For a
boundary-layer-like coordinate system the viscous terms are
thus simplified to

R;18,J7"x

i 0
pe+n)u,+ (u/3)n, (neu, +n,0,)

w2 +nd)v, + (w/3)n, (01, +1,0,)

«PI(y=1) ~T(i+n2)8,a% +u(nl+nl) (4’ +v?),/2

+ (u/6) 2 (u?), +n3(v?), + 20,1, (uv),]

=R;'3,8 ©)

and Eq. (4) is rewritten
3,G+9.E+9,F=R;'3,5 (10)

The thin layer model is not a necessary step in this develop-
ment, but it is a useful simplification. Although similar (or
identical if £ is normal to n) viscous terms are dropped in
boundary-layer theory, the ‘‘normal momentum’’ equation is
retained in the thin-layer model and pressure can vary through
the viscous layer. Consequently, the thin-layer model is
devoid of the problems that would occur in matching an
inviscid solution with a conventional boundary-layer solution
and the separation point is not a mathematical singularity.

Along the body surface n(x,y,¢) =0 (see Fig. 1), the con-
dition of tangency in inviscid flow is

o (=%, U

while in viscous flow U=0 as well. The pressure on the body
surface can be obtained from the momentum equations and
one such relation is found for inviscid flow by simplifying
7% (£ —momentum) + 9} (1 -— momentum):

pld.n, +ud n, +vd.n,]—pU(n.u; +n,0;)
=+ Em)pe + (i+nd)p, =Vni+nip, (12
where #n is the direction normal to the body surface. The same
relation has been used in viscous flow with U=0.

Jacobian matrices used in the time linearization of E, F,
and S are needed for the implicit algorithm to be defined later.

The flux vectors £ and F are both linear combinations of ¢, E,
and F :

E or F=(kyq+k E+k,F)J~! with ky=£, or g, etc.
, (13)

so the Jacobian matrices A =8E/3§ and B=03F/3g are given
by

A or B=kyI+k,A+k,B (14)

where A=0E/dq and B=09F/dq are the usual Jacobian
matrices of the Cartesjan flux vectors. The A or B matrix is
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Tk, k, k, 0 7
—u(ku+kyv) —(y=2)ku —{y—Dkv (y—1Dk,
+k,0° +ko+kutk,v +k,u
—v(kju+k,v) kv —(v—2)Yk,v (y—1)k; 15)
+k,0° —(y—Dkyu +ko+kutkyv
(kju+kyv)” [y(e/p) —¢°1k, [y (e/0) — &1k, Yk u+k,yv)
L[=v(e/p) +267)  —(y=1) (uk, +vk)u  —(y—1) (uk,+vk;)v +ko ]
where ¢° =0.5 (y — )(u? +v?). where M is defined by
Warming et al. > found the eigenvalues of k, 4 + &, B:
alk;A+k,B) =ku+kyv, kju+kyo, kju+kyv [0 0 0 0

+avkI+k3, kju+kv—avki+k3 (16)

so the roots of A or B are real and are simply
o(A or BY=k,+0o(k;A+k,B) )
The eigenvaiues o (A), for example, are U, U, U+ aVEZ + 2,

U—avEi+ el )
The elements of S are of the general form [see Eq. (9)]

fl (X;)’»f;q)=051(X;}’:l»q)anﬂi(x’)’:’,‘I) (18)

so each element linearizes in time (with the metrics fixed at
n+42)as

4

as
St =fr + a3 { ) ["
S, afd, 3q,

=1

n(q?” —q?)]}

[;;i L(qf“—tz?)]}anﬁ,ﬂ (192)

4

+{E

(=1

For simplicity, p and « will not be taken as functions of g (as
this would require numerical evaluation of the elements) and
da/dq =0. Furthermore, § is a vector that is homogenous in ¢
of degree zero, and consequently

and the linearization drops to

4 38
fei=preags,| B (G [ar)] (195)
=17 BQU n
Using this linearization in Eq. (9)
R;[ans‘n+1:RevIan(§n+J—1Mn&n+l) (20)

Fig.1 Physical and transfomed computational planes.
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oy =pl(4/3)n5+n3]

a; =(u/3)nm,

a; =plni+ (4/3)n3]

ay =ykP7 (0] +n3)

and M differs from M insofar that it is formed using elements
of g not q.

For practical calculations a turbulence model must also be
supplied. In the present calculations a two layer algebraic
eddy viscosity model patterned after that used by Cebeci !
was supplied by Barrett Baldwin Jr. of the Ames Research
Center. A detailed description of the model will be published
separately by Baldwin.

IV. Advantages of the Transformed Equations,
Grid Generation, and Accuracy

The transformed equations are somewhat more com-
plicated than the original Cartesian form but offer several
significant advantages. The main advantage is that boundary
surfaces in the physical plane can be mapped onto rectangular
surfaces in the transformed plane. Unsteady body motion has
also been incorporated into the equations. Another significant
aspect of the transformation is that grid points can be con-
centrated in region that experience rapid change in the
flowfield gradients, eventually allowing dynamic remeshing.

Grid Generation

To take advantage of the generality of the transformed
equations, one need a fairly automatic method of generating
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smoothly varying grids that fit arbitrary bodies and allow grid
point clustering. While several automatic grid solvers have
been developed *!'"% one that is appealing for the present
application is the scheme advocated by Thompson et al.! and
Thames et al.? In their method the grid in the physical plane
is defined by the solution of a Laplace or a Poisson equation.
Grid points are arbitrarily specified on the body boundaries,
so even if the Laplace equation is used'the generated grid is
not orthogonal. The capability to select the location of
boundary node points is one of the desirable features of the
scheme and Egs. (3) and (4) do not assume orthogonality.

To actually solve the grid generation equations, the Poisson
equation is itself transformed to the specified transform plane
and is solved on the same rectangular grid on which the flow
equations are solved (see Fig. 1). In the grid generation
method of Thompson et al. this entails finding values of x,y
on the known £,7 grid by solution of

axg — 2Bxg, +yx,, = —J? (Px; +Qx,)
Yy = 2BVey + Vg =—J? (Py; +0y,) (22)
where
a=xl+yl, B=xx,+yy, v=xi+yi

M
P=— E a .g_ELehcmlE—Eml)

m=1 m |£—E,,,|
N I
- Y i‘s_"e(—d,,ws—s,,)hw—n,,)%
n
n=1 IE‘EnI
o n—1
0= - E a, TJ_Te(—C,nln—nml)
m=1 = m

N o
- E b, A7 p—d NGt )
n=1 |’7—77n’

and where a,,, b,, c,, and d, are arbitrary positive coef-
ficients. Values of x and y on the £ and n domain boundaries
are known and correspond to the specified x,y grid points in
the physical domain. The transformed Poisson equation is
nonlinear but it remains elliptic and is easily solved by con-
ventional relaxation methods used, for example, for subsonic
potential flow.

The grid generated is smoothly continuous, and grid points
can be clustered along the body as desired. Clustering of grid
points to the body is seldom adequate if the Laplace equation
(P and Q=0) is used as the original grid generating equations.
The problem that is encountered can be observed in Fig. 2,
which illustrates a grid generated-about an airfoil. In this case
points are specified on the airfoil, a cut behind the airfoil, and
all outer boundaries as indicated in the schematic illustration
shown in Fig. 1. For these boundary conditions the interior
points are poorly clustered in the radial-like n direction, away
from the trailing edge. To obtain good clustering in this
direction, one can adjust the P and Q source terms of Eq. (22)
or perhaps some other terms. Alternately, the grid point
distribution along a line of constant ¢ or  can be discarded
and reclustered by simple stretching relations (see Ref. 21 for
details). Because of its simplicity this is the approach taken
here. Figure 3 illustrates this clustering where the x,y
distribution of grid points along each line of constant £ shown
in Fig. 2 is redistributed by means of a stretching relation. An
expanded portion of the grid about the airfoil is detailed in
Fig. 4. Note that the highly skewed lines in the wake occur
because x and y are specified on the cut ab and de (see Fig. 1).
Floating these values removes this skewness, but the grid
spacing along the cut must then be controlled in another way,
for example, the source term P.
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Fig. 2 Grid generated about

INEN
H

1

=t an airfoil with P and 0 =0.

I

T

Fig. 3 Computational grid
generated by combining simple
! stretching in 5 with the
Thompson, Thames, and Mastin
method.

i

Fig. 4 Grid detail near body.

Accuracy

Once a grid is generated it is a simple matter to difference
the xy values in the transformed plane to form x;, x,, »;, ¥,
and from this information form the metrics £,, £,, 1,, 7,, and
J using Eq. (6). The metrics themselves should be evaluated
with sufficient accuracy that they correctly carry information
about geometry; however, an exact evaluation of the metrics
would not necessarily lead to the minimum error. Consider,
for example, the continuity equation in steady freestream with
v=0. From Eq. (4)

O (J 7 Epolle) +3, (J 7 nypotie) =0 (23)

or using E('] (6) and taking p, u,, outside the operator
Pl (3:Y, —8,¥:) =0 (24)
If the terms y, and y, are exactly evaluated but the operators
d; and 8, are approximated by central differences, then Eq.

(24) is not identically zero but is zero to second-order ac-
curacy. In the far field, in which y may vary rapidly, this error
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can be appreciable. However, if y, and y, are also centrally
differenced, the difference equations cancel identically for
constant values of pu for any grid stretching.

In fact, the transformed differenced equations are exactly
balanced on any deformed rectangular grid for constant
values of p, pu, pv, and e if identical central difference
operators are used to evaluate both the metric terms and the
spatial derivatives of the governing equations. Such difference
operators are used throughout this work. Once the dependent
variables depart from constant or freestream values, the grid
in the physical plane must meet additional constraints if good
solution accuracy is to be obtained. In particular, the
dependent variables should vary smoothly with £ and 5 and
the metrics should be evaluated with sufficient accuracy.

V. Implicit Algorithm

A time-implicit numerical algorithm is used to solve the
equations because in many flowfield problems it is desirable
to take a larger time step than that permitted by a con-
ventional explicit scheme. Such a situation may occur if the
dependent variables experience a more rapid variation with
space than with time or if the time accuracy is controlled by
boundary conditions which act as forcing functions.

In the Beam-Warming'®!' delta-form approximate-
factorization (AF) algorithm, which is used here, the main
computational work is contained in the solution of block
tridiagonal systems of equations. As a consequence, the trans-
formed flowfield equations (including the viscous terms) are
not much more costly to solve than the equations in Cartesian
coordinates. The Beam-Warming implicit algorithm has been
described elsewhere in various applications!®!113.22 and is
presented here without elaboration. For either trapezoidal or
Euler temporal implicit differencing the delta-form algorithm
is given by

(I+hd, A" —J " 'ahV A, J) (I+h8,B"— T 'ahv A,J
_Re—lhén‘]~1Mn) (q‘rH-l __én)
= —Ar(8E"+6,F"—R;15,8")
—ah]T(V,A;) 2+ (V,4,)°1JG" (25)

where for the convection terms 6; and 6, are second-order
central difference operators, 2= Ar or At/2 for first-order or
second-order two-level time differencing, and for convenience
the spatial indices are deleted throughout. For second-order
accuracy all of the metric terms should be evaluated at time
level n+ 2 and A, B, and M are defined in Sec. III. Fourth-
order dissipation terms (V A, ) 2 and (V,,A,,)Z are explicitly
appended to the right-hand side to control numerical stability
where, for example, Vv, is the conventional backward dif-
ference, V., =I—E;' and Ef¢’q; =q;,,,. For consistency,
these terms are multiplied by Af and here o =0(1). To alleviate
restrictive stability bounds (aAf<1/16), second differences
operating on §"*! —§" are inserted into the implicit factors.
By a linear stability test with A=At one finds that cAr=< %3,
Implicit use of fourth-order differences as dissipation terms
would permit any value of «A¢ but would require block-
pentadiagonal inversions. Note that the dissipation terms
have been scaled by the Jacobian determinate to maintain a
freestream solution, so the numerical dissipation terms are
not conservatively differenced.

The viscous terms are central-differenced in the usual way.
Any one term has the form 9, «d, 8 and is differenced as

0,00, B=[{ct; s+t ) (Bjusr—Bix)

"(aj,k+0‘j.k—1)(Bj,k—ﬁj,k—l)]/[z(Aﬂ)Z] (26)

For transonic flow cases, upwind second-order trapezoidal
(or Padé) spatial differencing is used in the ¢ direction for the
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last several points prior to the shock wave in order to prevent
upstream shock capturing oscillations. The operator is
transitioned as described by Beam and Warming '* and the &-
direction dissipation term must be removed in regions of
upwind differencing. In the freestream, the Padé upwind
difference operator does not lead to perfect difference can-
cellation as does the central difference operator, but in the
current application it is employed only in those portions of the
grid that gradually vary.

Finally, it is remarked that higher-order spatial accuracy
for the convection terms is simply achieved in the steady state
by using fourth-order accurate central differences for the
right-hand side operators 6, and 6,. However, this dif-
ferencing has not been combined with upwind differencing
and, according to linear stability theory, it is unstable when
h=At/2.

To solve Eq. (25) one first forms the right-hand side terms,
beginning with the smoothing. operator and then the steady
part of the partial differential equation. These values are
temporarily stored in ¢"*!. The block tridiagonals in ¢ are
then formed and solved with the result again stored in ¢g"*’.
Finally, the block tridiagonals in n are formed, solved, and
the correct value of §7*/ is found by adding ¢” to the result.

Throughout the inversion process values of ¢g"*/ are
assumed to equal ¢" on the flowfield boundaries. This ap-
proximation results in a first-order accurate error in time on
the boundary, but leads to a simple and flexible scheme. In
the present formulation new values of ¢ are obtained on the
body boundary at the start of each time step by linear ex-
trapolation of the flowfield for p and U and using Eq. (11) to
find new values of u and v. Updated values for surface
pressure are obtained from Eq. (12) by central differencing
p¢, forward differencing p, , and solving a tridiagonal system
of equations for p along the body surface. These data are then
converted into values of p pu, pv, and e. For the particular
problem shown in Fig. 1, values of p, pu, and pv are found on
the downstream boundaries ef and ah by extrapolation and e
is found from Eq. (2) by maintaining p = p, . Flowfield values
along the common cut de and ba are found by averaging
linear extrapolates of the variables from above and below.
Finally, the numerical dissipation terms are dropped to
second differences at points adjacent to the boundaries and
are dropped altogether at body surfaces in viscous flows.

All of the boundary conditions could have been at least
partially incorporated into the implicit inversion process;
doing so would have improved the time accuracy and perhaps
allowed larger time steps to be taken without instability.
However, the inclusion of a particular set of boundary
conditions into the inversion process leads to a more com-
plicated program that is not as readily converted to other
flowfield problems.

VI. Results

A variety of flowfields about airfoils have been computed
to test the combination of numerical algorithm, grid map-
ping, and boundary conditions for the transformed flow
equations. Inviscid and viscid, steady and unsteady cases have
been run.

A subcritical flow solution and comparison are shown in
Fig. 5. The flow was computed about a NACA 0012 airfoil at
an angle of attack « of 2 deg using a grid similar to that shown
in Fig. 3. Some 49 grid points were distributed over the airfoil
and the minimum grid spacing in the 5-direction was 0.01
chords. The grid was stretched smoothly to 8-12 chord lengths
away from the body, depending on whether the outer bound-
ary was horizontal or vertical to the airfoil. The present
solution accuracy is satisfactory in comparison to the Sells?
solution proposed by Lock?* as a test case, although better
leading-edge grid refinement is desired.

A transonic solution obtained with and without upwind
differencing is shown for the same airfoil in Fig. 6 with
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NACA 0012
M, =063
a=2°

STREAM FUNCTION SOLUTION,
-8 REF. 24

VA CURRENT SOLUTION

12 I 1 i ] )
0 2 4 6 8 1.0
x/c

Fig. 5 Inviscid subcritical comparison.

NACA 0012

«——— NONCONSERVATIVE FULL POTENTIAL
SOLUTION REF. 26

81 ¥ A CURRENT SOLUTION, CENTRAL
() DIFFERENCING
O SUPERSONIC UPWIND DIFFERENCING)

1.2 1 1 1 1 !
0 .2 4 6 .8 1.0
x/e

Fig. 6 Inviscid transonic comparison.

M, =0.75 and « =2 deg. For comparison, a nonconservative
full potential solution?® is shown which tends to place the
shock wave too far upstream. The effect of angle of attack
can also be achieved by plunging the airfoil at a constant rate
by simply setting ,=—y,n, and § = -y,£,. A solution
about a NACA 64A010 airfoil in a plunge equivalent to an
angle of attack of 1 deg (¥, = —a M, sin (x/180) where a,, is
the nondimensional reference speed) is compared to a very
accurate calculation due to Magnus?® in Fig. 7. Again, the
solution accuracy is good although clearly the weak shock on
the lower surface is highly diffused in the coarse grid. In the
preceding calculations approximately 800 time steps are
required to reach a steady state.

A sinusoidally plunging airfoil comparison was also made
with the Magnus® program and in Fig. 8 both C, and C,,
comparisons during the fourth cycle are shown. The airfoil in
this case is plunging between =1 deg with a reduced
frequency of 0.4 [where the reduced frequency is defined by
k=2m/(1,M,) and t:, is the nondimensional time period,
t, =1,a./(chord length)]. The lift comparison with Magnus is
excellent, but the moment about the quarter chord differs
somewhat in amplitude and phase. The moment, however, is
very sensitive to shock smearing and this discrepancy can be
attributed to the coarser grid used with the present method.
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NACA 64A010
M., =0.80, a'=0°
PLUNGE ~ o = 1°

¥ A CURRENT SOLUTION
Cy =0.238
Cm = -0.0170

—— MAGNUS SOLUTION, REF. 26
azp Cn =0.235
Cm =-0.0152

x/¢

Fig. 7 Transonic airfoil solution at a constant plunge velocity.

NACA 64A010
{yr/80) = ~Moo sin{1°) sin{y)
Mo =08, =0
INVISCID
e+ — CURRENT SOLUTION

@® A DATA FROM MAGNUS, REF. 26
010
.005

Cm
-.005

-.010

~15 i 1 L - 1 ]
0 60 120 180 240 300 360
PLUNGE ANGLE, y, deg

—015"=

Fig. 8 C, and C,, variation during the fourth cycle of sinusoidal
plunging motion.

The inviscid gplculations basically show the accuracy and
flexibility of the code. Good results are obtained on a
relatively coarse grid and with use of a finer grid should be
excellent.

A series of viscous flow calculations was made with very
fine grid spacings in the % direction. For example, for an
Re=11x10% simulation the minimum grid spacing near the
body was 0.000025, but the grid is stretched exponentially
away from the body. As mentioned previously, a two-layer
eddy viscosity model was provided by Baldwin for turbulent
flow simulations. i

To substantiate the numerical algorithm a laminar flow
calculation was made at low Mach number (M, =0.2) and in
Fig. 9 is compared to one of Mehta’s?’ excellent in-
compressible solutions for flow about an NACA 0012 airfoil
in zero angle of attack and Re=10%. Like the inviscid
solutions, the agreement is good for the grid size used, but the
discontinuous change of body shape at the airfoil trailing edge
does result in small spurious oscillations in that region. This
error is accentuated at lower Mach numbers and for
M, =0(0.1) the numerical algorithm became generally
inaccurate with very poor steady-state convergence.

A series of exploratory calculations was made with an 18%
thick biconvex airfoil at zero angle of attack using a relatively
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Fig. 10 Computed pressure distribution over an 18% thick biconvex
airfoil.

coarse grid. Experimental data on this airfoil were taken by
McDevitt et al.?® in the high Reynolds number channel at
Ames Research Center. Numerical calculations were per-
formed by Deiwert?>3° and, more recently, Levy3! has been
exploring the buffet range of this airfoil, using the Deiwert
code with MacCormack’s new modifications to improve
efficiency.?? In Levy’s calculation, the leading edge of the
biconvex airfoil was blunted slightly and the same airfoil was
used in the following calculations. In the experiment, the
airfoil buffets through the Mach number range 0.76 to 0.78,
although this range can be extended depending on whether the
tunnel Mach number is brought up or brought down from a
previous Mach number value. In Levy’s calculations, strong
buffeting occurs at M, =0.754 with a reduced frequency
k=0.81. In the present calculation M_ =0.754 is very steady
and is in relative agreement with experiment (see Fig. 10).
Even plunging the airfoil for a brief period failed to induce a
buffet condition. However, buffeting does occur with the
present code at M, =0.783 at a reduced frequency of 0.82
where the period of oscillation was found from the C; vs «
curve shown in Fig. 11. Levy?3! gets essentially steady flow at
this Mach number.
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Fig. 11 C; vs nondimensional time (£=1~0.783 chords traveled)
for an 18% thick biconvex airfoil at M, =0.783 and « =0 deg.

Computer processor times for inviscid flow calculations
using a 77 X 27 grid have been approximately 0.75 seconds per
time step on a Control Data Corporation 7600 computer and
approximately 1.25 second per time step for the viscous cases
(with turbulence model) on a 71x33 grid. The present
program is strictly a research code, and computer processor
unit (CPU) times should be reduced by Y% to Y2 by careful
reprogramming.

Even without assuming improvements to the numerical
algorithm, significant improvements in CPU time will likely
be obtained by exploiting the organized data structure of the
overall numerical algorithm. This is because arbitrary
geometries are mapped onto grid lines of a well-ordered
rectangular grid (in contrast to some poorly ordered finite-
element methods that use triangular elements) and the spatial
operators have been factored into products of easily in-
vertible, one-dimensional operators. Although not employed
here, the algorithm can be readily modified to accept interior
boundary surfaces. Consequently, the overall numerical
algorithm is compatible with vectorized computer processors.
At this writing, H. Lomax and H. E. Bailey of Ames Research
Center have successfully adapted the basic algorithm
(without, for example, upwind differencing) to the ILLIAC
1V parallel computer processor.

VII. Conclusions

An implicit finite-difference scheme has been combined
with transformations that permit use of automatic grid
generation techniques. The overall algorithm for the
equations of motion in conservation law form has con-
siderable flexibility and should be adaptable to a variety of
problems. The algorithm is sufficiently robust and efficient
for many unsteady flow problems and can be used to obtain
steady-state solutions as well.
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Practical combustion systems are almost all based on turbulent combustion, as distinct from the more elementary
processes (more academically appealing) of laminar or even stationary combustion. A practical combustor, whether
employed in a power generating plant, in an automobile engine, in an aircraft jet engine, or whatever, requires a large and
fast mass flow or throughput in order to meet useful specifications. The impetus for the study of turbulent combustion is

-

In spite of this, our understanding of turbulent combustion processes, that is, more specifically the interplay of fast
oxidative chemical reactions, strong transport fluxes of heat and mass, and intense fluid-mechanical turbulence, is still
incomplete. In the last few years, two strong forces have emerged that now compel research scientists to attack the subject
of turbulent combustion anew. One is the development of novel instrumental techniques that permit rather precise
nonintrusive measurement of reactant concentrations, turbulent velocity fluctuations, temperatures, etc., generally by
optical means using laser beams. The other is the compelling demand to solve hitherto bypassed problems such as iden-
tifying the mechanisms responsible for the production of the minor compounds labeled pollutants and discovering ways to

This new climate of research in turbulent combustion and the availabéli[y of new results led to the Symposium from
which this book is derived. Anyone interested in the modern science of combustion will find this book a rewarding source:
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