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; Abstract—The development of a comprehensive analytical model of rotorcraft aero-
T dynamics and dynamics is described. Particular emphasis is given to describing the
l ¥ reasons behind the choices and decisions invoived in constructing the model. The
‘ analysis is designed to calculate rotor performance, loads and noise; helicopter vi-

K . bration and gust response; flight dynamics and handling qualities; and system aero-

b elastic stability. It is intended for use in the design, testing and evaluation of a wide

| " class of rotors and rotorcraft, and to be the basis for further development of rotary
) wing theories. The general characteristics of the geometric, structural, inertial. and
aerodynamic models used for the rotorcraft components are described, including the
assumptions introduced by the chosen models and the resulting capabilities and
limitations. Finally, some examples from recent applications of the analysis are given.

1. INTRODUCTION

& For the design, testing and evaluation of rotors and rotorcraft. a reliable and efficient
alysis of the aircraft aerodynamics and dynamics is required. It is necessary to predict
d explain the rotor performance, loads, and noise; helicopter vibration and gust re-
ponse; flight dynamics and handling qualities; and system aeroelastic stability. Such
Ecapability is also required as a basis for further development of rotary wing theory. A
Bynumber of powerful analyses have been developed by industry and the government.
ﬂ- owever, upon review [1], these analyses exhibit a number of generic limitations. Typi-
Ereally rotary wing analyses have been developed or verified for only a particular type of
.ellcopter or a particular technical problem, that reflects the specific interest of the
Qriginating organization. Most of the existing codes are fairly. old, originating in investi-
R gations conducted ten or fifteen years ago. Some have been continuously updated, but
kventually that mode of development produces its own limitations. Hence much of the
B presently available technology is not well utilized in the existing analyses. Moreover, with
parate analyses for the various problems of interest, it is inevitable that the technology
, not uniformly utilized.
. Therefore the development of a new rotorcraft analysis was initiated. The intention
Was to produce an analysis that utilizes recently developed technology, and one that is
[ appllcable to a wide range of problems and a wide class of vehicles. Of course, the
vassumptions made about the rotor geometry and aircraft configuration ultimately intro-
petluce limits on the application of all such analyses. The present analysis is applicable to
bgeneral two rotor aircraft, including single main-rotor and tandem helicopter configur-
Bations and side-by-side or tilting proprotor aircraft configurations. The case of a rotor or
= helicopter in a wind tunnel is also covered. The rotor model is applicable to articulated,
hingeless gimballed and teetering rotors with an arbitrary number of blades. Further-
more a single, consistent analysis is provided for all of the tasks enumerated in the
£ begmnmg of the preceding paragraph.

The development of a comprehensive analysis centers on the combination of appro-
priate elements from the relevant technology. The key concern is to obtain a consistent,
E.balanced choice of elements, that will provide a high level of capability in a practical
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%
tool. The result goes beyond the state-of-the-art however. The analysis implements the .} 5 q:i
results from investigations of specific aspects of helicopter aerodynamics or dynamicg #48
technology. Normally what is learned and therefore available for implementation in a
comprehensive analysis. goes beyond what was actually produced and used in such 'f"
investigations. In addition, comprehensive helicopter analyses are characterized by * e
strong coupling between the modelling elements, so by combining elements a model is -3
produced that is greater than the sum of its parts. .:-

The development of this rotorcraft analysis has been completed. The mathematical, .
description of the analysis is given in detail elsewhere [2]. The present paper describes :g‘;
the analysis in more general terms, and in addition discusses the reasons behind the .4
choices and decisions involved in constructing the model. The assumptions and limita- .+
tions introduced by the chosen modelling elements will be described. Such an exposition
also serves to define the current status of the technology available for comprehensive -3
helicopter analyses. The development of the analysis involves two tasks: the formulation %
of the mathematical problem and its solution. The elements of the analysis to be de-. Tf
scribed are the rotor structural, inertial and aerodynamic models; the blade mode calcu-
lation; the rotor nonuniform induced velocity calculation; the aircraft model: and the %
drive train model. The solution procedures will be described for the rotor motion and
airframe vibration calculation; for the rotor performance and loads calculation; and for *
the trim, transient, flight dynamics and flutter analyses. K

An overview of the problem to be solved is appropriate before beginning the descrip- .
tion of the rotor model. The first task is the trim analysis, in which the control positions gz
and aircraft orientation are determined for the specified operating condition. The per- «; '
iodic blade motion is calculated, and then the rotor performance. loads and noise can be
evaluated. The rotor mode! in the trim solution can use uniform inflow, nonuniform;.' :
inflow with a rigid wake geometry, or nonuniform inflow with a free wake geometry. The ‘,
aeroelastic stability. flight dynamics, and transient analyses begin from the trim solution:z}J
The flight dynamics analysis calculates the rotor and airframe stability derivatives, and-3&
constructs linear differential equations for the aircraft rigid body motions: the poles, ,',
zeros, and eigenvectors of these equations define the aircraft flying qualities. The tran:
sient analysis numerically integrates the rigid body equations of motion for a prescribed? NE
control or gust input. The aeroelastic stability analysis constructs a set of linear dlﬂ'eren-x
tial equations describing the motion of the rotor and aircraft; the eigenvalues of these
equations define the system stability. ‘

In this discussion, dimensionless quantities are generally used, based on the air densxty
p, the rotor radius R and the rotor rotational speed Q.

2. ROTOR MODEL

2.1. Structural analysis

The structural model of the rotor is based on engineering beam theory (ie. the-.J{8
Bernouli-Euler theory of bending) for the coupled flap-lag bending and torsion of a -}
blade with large pitch and twist. The basic assumption is that the structural elements of%
the blade have a high aspect ratio. This assumption is normally well satisfied for rbto’r -
blades, although engineering beam theory may be suspect at the root for hingeless rotors
The use of engineering beam theory is almost universal in helicopter analyses, but there
are some variations. Often the blade pitch and twist are assumed to be small; and
nonlinear terms may be introduced in the structural model (here all the nonlmearlty
considered is accounted for in the inertial and aerodynamic forces). ;;;

Figure 1 shows the geometry of the undeformed blade. It is assumed that the unde—
formed elastic axis is a straight line. The span variable r is measured from the center of :
rotation; the coordinates x and z are the structural principal axes of the section, with - 3
origin at the elastic axis. The tension center (modulus weighted centroid) is on the x axis, i
at a distance x¢ aft of the elastic axis. The angle of the major principal axis (the x axis): I?
with respect to the hub plane is 6. The blade pitch is described by root pitch 6°(¥) ( ng1d P

Bl \
3

wEL

wl’

pitch about
system), bt
0=6°+90
is small, bu
axis system
(i. j and k)

Figure 2
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section due
¢..and 6, a
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Fig. 1. Geometry of the undeformed blade.

8 small, but 6° and 0,, can be ldrge angles. The unit vectors in the rotating hub plane
xis system are ig. jg and kg (Fig. 1). The unit vectors for the prmC1pal axes of the section
(l j and k) are rotated by the angle 8 from the hub plane axis.
4 Figure 2 shows the geometry of the deformed section. The deformation of the blade is
iescribed by (a) deflections x,. r, and z, of the elastic axis: (b) rotations ¢, and ¢, of the
section due to bending: and (c) twist 6, about the elastic axis. The quantities x,. ro. Z,. @,
§:¢., and 0, are assumed to be small. (Since-the present structural model includes only the

air density

y (ie. the
sion of a
ements of
for rotor
2§S rotors.
but there
mall; and

mlinearity
UNDEFORMED

E
the unde- LASTIC AXIS

center of
tion, with
he x axis,
he x axis)

*(y) (rigid

DEFORMED
ELASTIC AXIiS

Fig. 2. Geometry of the deformed blade.
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lowest order terms, a more precise definition of the order of these quantities is not

necessary). The unit vectors of the bent cross section are iy, ji and ki, which are |
obtained from i, j, and k by rotating about the x and z axes by the angles ¢, and ¢, ¥
respectively. By definition. j,, is tangent to the deformed elastic axis. so j,, = dr/ds where #
r = x,i+ (r + r,)j + x,k and s is the arc length (Fig. 2). It follows that ¢, = — x, — 2,6’ &8
and ¢, =z, — x, 0': or ¢,i + ¢,k = (z,i — x,k). The position of a blade element is ";;4
r = xi + rj + zk in the undeformed blade, and r = (x, + x)i + (r + r, + x¢, — 2¢,)j 3
+ (z, + 2)k is the deflected position.

lar to the elastic axis remain so after bending of the blade; and that all stresses except "§
the axial component are negligible. The structural analysis follows the work of Houbolt 7%
and Brooks [3]. The strain tensor is defined by 2y,.dx,dx, = (dS)* — (ds)?, or
Ymn = $(Gmn — gmn)- Here G, and g, are the metric tensors of the deformed and unde- g
formed blade [4]; dS and ds are the corresponding differential lengths in the material;
and x,, are general curvilinear coordinates. The axial component of the metric tensor is 4§
obtained from | &r/dr|?, using the position vector r of the deformed or undeformed blade. $
The strain analysis is simplified by neglecting the elastic extension r,, since then to first 2
order the arc length along the deformed elastic axis is s = r. The linear strain ¢, is
obtained from the axial component of y,,; it takes the form q

€, =€ + (X — xc) €, + 26, + 0, 0, (x? + 22 — k)

where the terms €7, €,, and €, are linear functions of xg, zq, ro, 0, ¢, and ¢, (the strain 48
due to the blade extension ry is included in ey at this point). Here kp is the modulus,
weighted radius of gyration about the elastic axis: and the strain ey is related to the blade § »_‘
tension by T= [ Ee,, dA = er | E dA.

The axial stress is given by g, = Ee,,, where E is the modulus of elasticity. The§
direction of a,, is assumed to be given by the vector dr/dr (which does not give the 58
torsion moment due to tension quite correctly, but the error is not usually important foi: 3§ 7

rotor blades). The moment on the deformed cross section, M = My, + M,j,s + M, K.y3
is obtained by integrating the cross product of the elemental force ¢,,dA4 and its moment §
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deal with moments about the tension center at x = xc.

The section bending moment vector and flap-lag deflection vector are defined as¥
follows: M,y = M,i + M,k and w = z,5i — xok. Then the result of the blade structural 3
analysis is '

M,e = (EIii + EIKk)- W' + 8, 0, (EIk — EI,i)
Mg = (GJ + k3T + 82 EI )0, + 0, k3T + 0, (EL,k — EI i) W’

where EI,, and EI,, are the flapwise and chordwise bending stifiness; and El,,, EI,, and'48
El,, are higher order integrals [2]. (Dyadic notation is used in the expression for Mzg. Az
dyadic D is a sum of terms of the form (cab). where a and b are vectors and ¢ is a scalar;
then the operation of a dyadic on a vector x is defined by D'x = (cab):x = ca (b-x),}
using the vector dot product). The vector form allows a simultaneous treatment of the §
coupled inplane and out-of-plane bending of the blade, even for large pitch angles, with ¥
considerable simplification of the equations as a consequence. 3

2.2. Inertia analysis

An integrated Newtonian approach is used to derive the partial differential equations’j
describing the motion of the rotor blade. The same or equivalent equations could bej
obtained by Lagrangian or differential Newtonian techniques. A modal representation is§
used to transform the partial differential equations to ordinary differential equations (in
time) for the degrees of freedom. The approach used is equivalent to a Galerkin analysis, 4
based on the orthogonal modes of free vibration for the rotating blade. A formal modal’}
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erivation is most convenient, and gives the same results as the Galerkin approach. A
e orthogonal mode analysis is not possible however, since it cannot handle the bound-
conditions correctly (particularly those associated with the lag damper moment and
he pitch control moment at the blade root).
The selection of modes affects the efficiency of the solution procedure. The modal
presentation separates the solution for the spacial variation and the time variation of
e rotor motion. Certain forces that couple aspects of the motion can be put in either
alf of the solution. The modes should be chosen such that as few as possible are needed
o accurately represent the forced response of the structure, which suggests including as
& many forces as possible in the modal solution. However, the increase in complexity of the
B modal computation is not compensated by any significant simplification of the equations
;df motion, so it is desirable to limit what is included in the modal solution as far as
8 possible. In the present analysis, separate modes are used for the bending and torsion
otion of the blade. The differential equations for the bending and torsion modes are of
g% different order. Also, for most blades the coupling between bending and torsion is pri-
:“"' marily due to aerodynamic and nonlinear dynamic forces. Coupled flap-lag bending
B modes are used (including the rigid flap and lag modes for an articulated blade). The
A . coupling of the inplane and out-of-plane blade motion by the structural and inertial
orces is significant, especially at large pitch angles or with large twist. Separate rigid
ody modes are used for the gimbal pitch and roll motion, or the teeter motion of a
wo-bladed rotor. Representing the motion of the blade on a gimballed or teetering rotor
My a rigid flap mode plus K elastic modes with a cantilever root boundary condition is
B equivalent to modelling the blade by K elastic modes with a pinned root boundary
g condition, although K + 1 degrees of freedom are used. Hence the model for a gimballed
or teetering rotor will be somewhat inefficient. The alternative however would be to

«calculate modes for the entire rotor, not just for a single blade. A separate rigid body
R’ mode is used for the blade pitch motion due to control system flexibility. Again there is

ome inefficiency involved in combining this mode with the elastic torsion modes of the
& blade. However it is simpler to handle the pitch control input and the root boundary
@8’ conditions by working directly with the rigid pitch mode (since the equation of motion is
: obtained directly from equilibrium of moments about the pitch axis). Also. the rigid pitch
k- mode is usually more important than the elastic torsion motion.
> There have been numerous investigations of rotor and helicopter dynamics, with much
B of the work in recent years focused on hingeless rotor characteristics. The models devel-

shaft motion, or involve other limitations on the geometry or degrees of freedom that
3 preclude their use here. Consequently the equations of motion were independently de-
- rived for the present analysis. While recent investigations have tended to deal with the
i: mathematics of the problem rather than the physics, certain nonlinear effects are known
i to be required for an adequate representation of rotor dynamics, particularly the Coriolis
¢ forces and the equivalent pitch-flap and pitch-lag coupling. The inertial analysis used
. here includes nonlinear accelerations and forces to some extent. The rotor blade and
U shaft motion are assumed to be small, but no formal ordering scheme is introduced to
e derive the equations of motion (hence no precise definition of what small means is
. required). The retention of nonlinear terms in the equations is based generally on estab-
k. lished knowledge of certain important nonlinear effects, and the requirement of consist-
B ency in the derivation. The structure of the resulting equations is described at the end of
¢ this section. Basically the equations are linearized about the time-averaged bending
deflection of the blade. It has been found [5] that this model gives results that are in
[. good agreement with calculations based on independently developed models for an
B, isolated blade in hover.
k- Consider an N-bladed rotor, rotating at speed Q (Fig. 3). The m-th blade (in = 1 to N)
 is at the azimuth location y,, = ¢ + mAy, where Ay = 2rn/N and ¢ = Q¢ is the dimen-
¥ sionless time variable. The S coordinate system (is, js, ks) is a nonrotating, inertial
reference frame. The B system (ig, jg, kp) is a coordinate frame rotating with the m-th
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Fig. 3. Nonrotating and rotating hub coordinate systems.

blade. The acceleration. angular velocity and angular acceleration of the hub. and the:
forces and moments exerted by the rotor on the hub are defined in the nonrotating frame
(the S system). The rotor blade equations of motion will be derived in the rotating frame;
The origin of the B and § systems is the location of the optional gimbal or teeter hinge,
The hub of the rotor is a distance zp, below the origin (gimbal undersling). The blade has"
a torque offset xr,. The precone angle 5, gives the orientation of the blade elastic axig]
inboard of the pitch bearing with respect to the hub plane: dg4, is positive upward and
assumed to be a small angle. The pitch bearing is offset radially from the center of§
rotation by rg,. The droop angle é¢,, and sweep angle ér,, give the orientation of the Ji
elastic axis of the blade outboard of the pitch bearing. with respect to the precone. Both S

axis w1th respect to the precone: these angles are positive downward and aft respectlvely,
and both are small. i

The geometry of the blade was shown in Fig. 1. The undeformed elastic axis is GifS
stranght lme (except for the droop and sweep angles at the pltCh bearmg) The unit vector ‘

of rotation), x, and z. It is assumed that the direction of the mass principal axes is thelg
same as the direction of the modulus principal axes. The inertial characteristics of the ¢

blade are described by the section mass m, the chordwise center of gravity offset x;, and: 3§
the section polar moment of inertia about the elastic axis I,. The distance x; is positive; '}
aft, measured from the elastic axis. The corresponding z displacement is neglected. The'
rotor blade motion is described by the following degrees of freedom: (a) gimbal pitch and¥j
roll motion of the rotor disk (omitted for articulated and hingeless rotors). or teeter'
motion of the blade (for two-bladed rotors only): (b) rotor rotational speed perturbation;%
(c) rigid pitch motion about the feathering axis and torsion about the elastic axis; and (d)"
coupled flap-lag bending deflection of the elastic axis. including rigid flap and lag motion:§
if the blade is articulated. The gimbal degrees of freedom are B¢ and fgs, respectlvcly’ '
pitch and roll of the rotor disk. The rotor rotational speed perturbation is ,. The
degrees of freedom of the gimbal motion in the rotating frame are/
Be = Bsccos ¥, + Bessiny,, and 8; = — Bgesin Y, + Bgscos iy, For two-bladed rotors, §
the teetering degree of freedom By may be included. The teetering motion is defined in’
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L3
e rotating frame, hence f; = Br(—1)" and 6 = O for this case. Figure 2 showed the
Bometry of the deformed blade. The deformation is described by twist 0, about the
asth axis: bending deflections xo and z, of the elastic axis; and rotations ¢, and ¢. of
e section due to the bending.

'The blade pitch angle 0 is measured from the hub plane to the section major principal
is (the x axis). The pitch of the deformed blade is composed of the root pitch 6°(y) (the
B gle at the pitch bearing, due to control commands, control system flexibility and

Rinematic coupling); the built-in twist 6,,(r): and torsion about the elastic axis 0.(r. /). By
‘ finition. both 8,, and 6, are zero at r = rp,, and only 0, produces shear stress in the
fblade. The commanded root pitch angle is defined as & = 0, + 0.... Here 0.,y is the
g= m value of the collective pitch, which may be large but is steady in time: and 0,,, is the
ferturbation control input (including the cyclic control required to trim the rotor). which
8 time dependent but is assumed to be a small angle. The difference between the actual
oot pitch and the pitch commanded by the control system, (8% — ), is the rigid pitch
otlon due to control system flexibility or kinematic coupling in the control system.

Hence, the blade pitch may be written as

>

»’_: 0 = 90 + gtw + oe = (()coll + Blw) + (80 - 91:) + gcnn + ee

‘l" he pitch angle may now be separated into trim and perturbation terms, 6 = 6, + 0.
1y e trim term 0, = 0., + 0,, is a large steady angle: and the perturbation term
= (8° — 6) + 0., + 0, is a small angle since all the components are small. The pitch

ki gt the blade root (r = rr,) is then
00 = ecoll + (00 - 6" + ocon = 6!?1 + 7)0

' “or the rigid pitch motion the following notation is used: po = 0° = (0° — ¢) + 6_,..
’; The velocity and acceleration of the blade section relative to the rotating frame are
Bv, = dr/dt and a, = dv,/dt, where r is the distance from the rotor hub to the center of
gravxty of the section, and the time derivative is taken relative to the B coordinate
:ystem. Based on the model described above, the distance. velocity and acceleration are
expressed as linear functions of the degrees of freedom, except that the coefficients of the
lade torsion degrees of freedom depend on the bending deflection (since torsion of a
% ent blade produces inplane and out-of-plane motion of the elastic axis). For the blade
Loriolis acceleration the radial velocity component j-v, is required, including the effect of
} he change in the radial position of the section due to bending. The acceleration of the
blade is required with respect to an inertial frame, specifically the S system. The B
“coordmate frame rotates at a constant angular velocity Q = Qkg with respect to the S
pframe. The shaft motion is composed of linear and angular displacement of the origin of
ithe S frame. The acceleration. angular velocity, and angular acceleration of the rotor
shafl have the following components in the nonrotating, inertial frame:
a9 = Xhig + Yuis + 24ks
Wy = A,is + ajs + aKs
3 o = Ads + o,js + AKs.
E: 1t is assumed that a,, @, and @, are small quantities.
The acceleration of a blade point in inertial space is required, in terms of the motion of

B the shaft. the rotation of the rotor and the blade motion in the B frame. From the result
E for the acceleration in a rotating coordinate frame (S frame. rotating a rate ). there
E follows:

a=2a9+8,,+ 20 X Vs + Wy X (Wg XT)+ Dy xT
where a, ; and v, ; are the acceleration and velocity relative to the S frame. The B system

j rotates at angular velocity 2 = Qkp with respect to the S frame. Hence with Q constant
P and no angular or linear acceleration of the B frame with respect to the S frame, there
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follows:
a,,= a8 +2Qxr+ Q2 xQxr)
Vis= Y+ X i

where a, and v, are the acceleration and velocity relative to the B frame.
Thus: {
a=a,+4+2 +2QxV,+QxQxr1)+ 20y xr + ‘18
Zwox(er)+wox(woxr)+a')o><r.-.§;
To first order in the velocity and angular velocity, this becomes finally: i3
Sa,+ 20 X (U XT)+ Do xr+a+20xyv,+2x(Qxr)
— Q%(igip + jgis)r
(using dyadic notation for the final form). The approximation r = rj, is used to evalua ,}_
the hub motion terms. 3
The aerodynamic forces acting on the blade section are F,, F, and F,. These are the
components of the aerodynamic lift and drag forces in the hub plane axis system (the B
frame). The directions of F,, F,, and F, are respectively in the hub plane, radial, and3
normal to the hub plane. (The aerodynamic forces are defined in more detail in section’ 3
2.4). There are also radial components of F, and F, due to the tilt of the section by bla

bending; here F, is just the radial drag force. Thus the aerodynamic force acting on th
section at the deformed elastic axis is >

Faero = inB + F~rj8 + szBs

= a9 + 2Q(kgr — rkp)wy — (r x ) + a, + 2Q(jgip — igjp)V,

where

F~r = F, — F,[Bg + Ora, — Ora, + kg (xol + zok)]

— Fil—= s + dpas +ip(xol + zok) 1% '7‘"

The section aerodynamic moment about the elastic axis is M,. These section aerod
namic loads are integrated over the blade span to obtain the total forces and moments

The equations of motion for elastic bending, torsion and rigid pitch of the blade 2 -";z :
obtained from equilibrium of inertial, aerodynamic and elastic moments on the portiof{S
of the blade outboard of r: M; = M, — Mg, where M is the structural moment on thigs
inboard face of the deformed cross section; M is the total aerodynamic moment on thi " '
blade surface outboard of r; and M; is the total inertial moment of the blade outboard o
r. The structural moment ME is obtained from the engineering beam theory for bendi m
and torsion, from the control system flexibility for rigid pitch, or from the hub spring foR
gimbal or teeter motion. M, is the inertial moment of the blade outboard of r, about th
point ro(r), obtained by integrating the acceleration times the blade density over th
volume of the blade: =

1
M= [ tstp) = o) x wdmap

13

The aerodynamic moment M, is obtained by integrating the section aerodynamic forces
over the length of the blade:

l _".‘
M, = f [£(p) — rolr)) X Faoedp + [ Muiesdp

For bending of the blade, engineering beam theory gives
Mag = M + Mk = (iis, + kko)Mg = [ii + kk — (xoi + zok)j]M.

Therefore the operator (ii,, + kk,,) is applied to M; and M, also. For bending, moment z
about the tension center (x = xc) are required. Then the desired partial differentialg
equation for bending is obtained from M, /d%r. Finally the ordinary differential equations
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or the k-th bending mode of the blade is obtained by operating with

quk-(...)dr

firamies o0
T et tw

Mg = jos Mg = [j + (xoi + zok)] Mg

80 this operator is applied to M; and M,. For torsion, moments about the section
fglastic axis (x = 0) at r are required; and torsion involves only the blade outboard of
Br, .. The desired partial differential equation for torsion is then obtained from oM, /ér.
PThe ordinary differential equation for the k-th torsion mode is obtained by operating
gwith

4 1
K f C,‘()dr
:, 0

Bvhere £, is the elastic torsion mode shape.

. The equation of motion for the rigid pitch degree of freedom Po is obtained from
ENecquilibrium of moments about the feathering axis, Mf, = ey, M(rp,). Here M is the
Fmoment about the feathering axis (x = 0) at r = rp, and e, is the direction of the
feathering axis, including perturbations due to blade bending:

3.

ers = jra + (Xoi + zok) |, , — Or4 Kp + Ora,ip

tlhe aerodynamic and inertial moments about the feathering axis are reacted by moments
ue to the deformation of the control system. The restoring moment acting on the blade
R8s given by the product of the elastic deformation in the control system, and the control

pystem stiffness Kg: M., = Kg(po — p,). Where the rigid pitch consists of the kinematic
fooupling and the blade commanded pitch angle:

pr = 01: cos wm + 01: sin |I/m + ABgovr + Aemnu
- Z KP.QI - KPGﬂG + (els Cos ll/m - olc sin l;Ilm)‘//s
i

e first two terms are the lateral and longitudinal cyclic pitch control inputs; the next
Rerms are feedback from the governor, and kinematic coupling due to the rotor mast
ppending. The constant Kp, is the kinematic pitch-bending coupling due to the control
Bystem and blade root geometry (g, is the i-th bending degree of freedom). Similarly, K,
js the pitch-flap coupling for the gimbal or teeter motion. For the rigid flap motion of the
blade, this coupling is usually expressed in terms of a delta-three angle, such that
EKp = tan 6;. The values of the kinematic pitch-bending coupling may be input par-
fameters, or Kp, may be calculated from the geometry of the blade root and control
system. The last term in p, is the pitch change due to the rotor azimuth perturbation with
a fixed swashplate. For a rigid control system (Kg very large) the rigid pitch equation
hreduces to p, = p,. Control system damping can be included in the restoring moment as
well. Also, the control system stiffness can be written in terms of the nonrotating natural
frequency of the blade rigid pitch motion, w,,.

The total force exerted by the rotor on the hub is the sum over N blades of the net
dforce of the m-th blade, F"™ = F, — F;. The inertial and aerodynamic forces are

1
f amdr
0

1
f (Fyig + Fiip + Fjg) dr
[1]

F’=

FA =
The components of the total hub force in the nonrotating frame are

N
F= Y F"™ = His + Yjs + Tks
m=1
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The total moment acting on the hub is the sum over N blades of the net moment

M™ = M, — M,. The inertial and aerodynamic moments are

1
M; =J r x amdr
0

1
NIA = f (inB - kaa)r dr.
0
The components of the total hub moment in the nonrotating frame are
N
M= 3 M™ = Mis + M,js — Qks.
m=1
The torsion component of the root moment in the rotating frame is neglected compared

to the flap and lag components.
The equations of motion for the gimbal degrees of freedom are obtained from the pitch

and roll components of the total rotor hub moment. Allowing for a gimbal spring and

damper in the nonrotating frame reacting the rotor moments, the equations of motion
are

M, + CGC.BGC + KgcBaoc =0
—M, + CgsPes + KosPes = 0

The gimbal hub spring can be written as Kg = $ NI, Q*(vZ — 1), where I, is the flapwise

moment of inertia of one blade about the hub center of rotation, and v; is the rotating 4.
natural frequency of the gimbal flap motion. The equation of motion for the teeter degree 3
of freedom of a two-bladed rotor is obtained from equilibrium of flap moments about the
teeter hinge. Allowing for a teeter spring and damper in the rotating frame, the equation .-

of motion is _
—'2MT + CTBT + KTﬁT = 0

where M is the total root flapwise moment:

2
2MT = Z (—l)miB'M(m).
1

m=

Again the spring constant can be written in terms of the flap natural frequency:

Ky = 21,Q%v} — 1). The equation of motion for the rotor speed perturbation is .
obtained from equilibrium of the shaft torque moments. The helicopter transmission &
couples the torque perturbations of the two rotors, hence this equation is best considered

with the helicopter body equations of motion.

To derive the modal equation. consider the equilibrium of the elastic, inertial, and 3
centrifugal bending moments, which gives the following homogeneous equation for bend- .*;

ing of the blade:

1 ’
[(Elii + EI kk)(zoi — xok)"]" — QZ[J pmdp(zei — xok)':|

— OmY- (Zoi — xok) + m(zoi — xok) =0 .

This equation may be solved by the method of separation of variables. Writing ¢

(2oi — xok) = n(r)e™. it becomes

1 ’
(EIn"y" - Qz<f pmdp rp’) - QmQ-n — mvip = 0.

This is the modal equation tor coupled flap-lag bending of the rotating blade. It is an. .:‘7'-‘
ordinary differential equation for the mode shape n(r); this mode may be interpreted as %
the free vibration of the rotating beam at natural frequency v. This equation, with the
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b ropnate boundary conditions for a cantilevered or hinged blade. is a proper Sturm-
) ouv1lle eigenvalue problem. It follows that there exists a series of eigensolutions #,(r)
.. corresponding eigenvalues vZ. The eigensolutions are orthogonal with weighting
function m; so if i # k,

1
‘ f nnm dr = 0.

he bending modes are normalized to unit amplitude (dimensionless) at the tip.
The homogeneous equation for the elastic torsion motion of the nonrotating blade is
iven by the balance of structural and inertial torsion moments:

—(GJO.Y + 1,6, = 0.

Bhe equation for the torsion motion of a rotating blade, including centrifugal forces
f;. some additional structural torsion moments could be used instead. However, for the
gorsional stiffness typical of rotor blades, the nonrotating torsion modes are an accurate
gapresentation of the blade motion. Solving this equation by separation of variables.
urite 0, = £(r)e™, so
?‘ (GJEY + Iwé = 0.

ere are a series of eigensolutions £,(r) of this equation, and corresponding eigenvalues

0, ¢ (k = 1). These modes are the free vibration shape of the nonrotating blade. at fre-
; ency w,. The modes are orthogonal with weighting function I 4, and are normalized to
Rinity at the tip.

The bending and torsion motion of the blade are expanded as series in the normal
godes. By this means the partial differential equations for the motion (in r and t) are
verted to ordinary differential equations (in time only) for the degrees of freedom. For
bending we write:

(20l — xok) = Z qi()ny(r)

i=1
fhere n; are the rotating coupled flap-lag bending modes defined above. The variables

; are the degrees of freedom for the bending motion of the blade. For the blade elastic
dorsion we write

.

ge = 121 Pi(t)éf(")

here ¢; are the nonrotating elastic torsion modes. The variables p; (i = 1) are the
egrees of freedom for the elastic torsion motion of the blade. The degree of freedom
Bor rigid pitch motion is p,. For rigid rotation about the feathering axis, the mode shape
B8 simply £, = 1. Thus the total blade pitch perturbation is expanded as the series

-

0=

"MS

Pi(?)f (r).

phe ordinary differential equation for the k-th bending mode is obtained by multiplying
phe partial differential equation by the mode shape #, and integrating over the blade
bipan. The modal equation is used to introduce the bending mode natural frequency into
$he equation. replacing the structural and centrifugal stiffness terms. and the orthog-
nahty of the bending modes decouples the inertia and spring terms. Similarly, in the
rdmary differential equation for the k-th torsion mode, the modal equation is used to
feplace the structural stiffness term with the torsion mode natural frequency and the
jorthogonality of the modes decouples the inertia and spring terms.
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Articulated rotors usually have a lag damper, which has an important influence on the
blade loads and stability. For a linear lag damper, the moment on the blade is g,,gc

where
{= 21 ks - mile)g
i=

and gy, is the viscous lag damping coefficient. The quantity kg ni(e) is the slope of the
i-th bending mode in the lagwise direction, just outboard of the lag hinge. The manner 1n
which the lag damping enters the equation of motion is obtained by a Galerkin or
Rayleigh-Ritz analysis, so the term kp- nk(e)g,agc is added to the equation of motion for
the k-th bending mode. A nonlinear lag damper moment M, ({, {) can also be mcluded,
by adding the term ;

|
14
»

kB"’;z(e)(glagc - Mlag) ‘; -
to the right-hand side of the bending equation. Here linear damping is included on the¥
left-hand side still, but only to improve the convergence of the solution; so the g;,; termii
must be subtracted from M,,,. Structural damping is also included in the bending andi
torsion equations, modelled as equivalent viscous damping. -,

The acceleration due to gravity is g = gkg, where g is the gravitational constant and ” :
is the vertical vector. The gravitational forces acting on the rotor blades may bas
accounted for by substituting a, — g for a5. Thus the components of g in the S frame a
subtracted from the components of the hub acceleration in the nonrotating shaft axes:;

The rotor blade equations of motion are ﬁnally obtained by substituting the expansxr 5‘
of the bending and torsion motion as series in the modes of free vibration. Also, :,,"
equations of motion, hub reactions and inertial constants are normalized at this pomt iff
the analysis, using the characteristic blade inertia I, (usually the flap inertia); and ‘,
blade Lock number y = pacR*/I, is introduced (where a is the two-dimensional lift 'i;‘
slope, and c is here the blade mean chord). The inertia constants and the blade equations
of motion are divided by I,. The hub forces and moments are divided by NI,, so the
appear in rotor coefficient form. The equations of motion for blade coupled flap-lag
bending and for blade rigid pitch and elastic torsion take the form ; ‘5.

M(‘.’.‘) + c(q.“) + K(q") = F+ l(M"*) o
Dk Dk Dk ac Mpg aero '

The coefficient matrices M, C and K contain terms that are functions of the bla N
bending deflection g;. The generalized force F is a linear function of the gimbal angh
rotational speed degrees of freedom (displacement, velocity, and acceleration), and of i
shaft motion components (angular velocity, angular acceleration, and linear acceleratio :i-
Some coefficients of the terms in F are functions of the blade bending deflection. T
addition, F contains the nonlinear lag damper moment in the bending equation, and tii
control moment (due to p,) in the pitch equation. The time- -average of the bendi v‘:
deflection is used in the coefficient matrices, so the inertia terms in these equations &
nonlinear but time-invariant (except for the shaft motion terms, where the transformatir
from the nonrotating to the rotating frame introduces sin y,, and cos y,, factors). Th y
aerodynamic forces produce periodic coefficients in forward flight. b

In rotor coefficient form, the rotor hub force and moment are L

N
NT; = o Cas + Ciis + Crke) = & 3 al (Cpis + Crds + Cp ko)

Y . : & .
—_— a—a(CMxls + CMy.'S CQkS g 0_"},_ melB — C,,,:kg)
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: Cy sin §,,Cp, + cos ¢,,C,
! Cy —cos Y, Cr, + siny,C,.
1 CT 1 N Cf:
( Cu, =N ; Sin Y Co.
'-," Cw, — o8 Y Cp,
.28
% Co Cn,

Micnce the blade root force and moment are resolved in the nonrotating frame, and
Bthen filtered by the summation operator. The blade root forces take the form

5

3 (e (S
aga (Cm> =G+ aa (Cm aero

K

iés e inertia term G is a linear function of the blade bending, torsion, gimbal, and rotatio-
3 fnal speed degrees of freedom (displacement, velocity, and acceleration) and of the shaft
otlon components (anguldr velocity, angular acceleration, and linear acceleration).
j gome of the coefficients in G are functions of the blade bending deflections (nonlinear
gierms). From the expressions for the hub reactions, the equations of motion for the
: ,. mbal or teeter degrees of freedom can be constructed.
E To improve the convergence of the solution for the blade motion, an approximation
for the aerodynamic spring and damping forces is included on the left-hand-side of the
hquations of motion (see section 5.1). Hence a linear, constant coefficient expansion of the
aerodynamlc forces M, M, and C,,_ in terms of the rotor degrees of freedom (g;, p;, i,
gand Be) is derived [2]. These terms “will be added to both sides of the equations of
] n Jotion, as described in section 5.1.

. .
W2.3. Blade bending and torsion modes

.. The requirements for the blade mode calculation procedure are that it be numerically
cient, and that it work well for blades with rapid radial variations in mass and stiffness
tributions. There are numerous satisfactory mode shape calculation methods avail-
e. In the present analysis the modal equations will be solved by a modified Galerkin
thod [6], which works better for large radial variations of the blade properties than
Bdoes the Rayleigh-Ritz method in standard form.

k The modal equation for coupled flap-lag bending of the rotating blade is

R '

(EIn"y" — Qz<f pmdp q') -mQQY-n — mv*p =0

BWwhere n(r) = zoi — xok is the bending deflection, EI is the bending stiffness dyadic,
‘ Q Qkj is the rotor rotational speed, and v is the natural frequency of the mode. The
_' pending stiffness dyadic depends on the blade collective pitch and twist angles, conse-
Equently the frequencies and mode shapes depend on these parameters also. The bound-
ry conditions are as follows: (a) EIn" = (EIy"Y = Oatthetip(r = R);and(b)p =9 =0
kAt the root (r = e) for a cantilever blade, or y = 0 and Eln" = K’ for an articulated
fiblade. K is the hinge spring dyadic [2]. The root boundary condition is applied at the
Oﬂ”set r = e to allow for hinge offset of an articulated rotor, or a very stiff hub of a
hmgeless rotor. Different offsets can be used for the out of plane and inplane motion. For
the modified Galerkin solution, the differential equation is written as

-

1 '
g M"—(J- pmdpn’) — mkgkg-n — mvip =0

n" — (EI/2*RY) ™M =0
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The deflection and moment are expanded as finite series in the functions f; and g;:
n = cfir) 2

M= Z digi(r) '

G

For simplicity the functions used for the moment expansion are g; = f; (using g; = EIf}” .
would reduce the solution to the standard Galerkin form). A convenient set of functlons 4
for f; are the bending mode shapes of a nonrotating, uniform beam. Such functions satisfy §
the required boundary conditions, and furthermore are orthogonal (necessary for good
numerical conditioning of the matrices). The series for  and M are substituted into the
differential equations, and the following operators are applied to the equations: 4

1 1
J' f.-(...)dr and I g (.. dr
e e Pt
The equations are integrated by parts and the boundary conditions are introduced. The ;
result is a set of algebraic equations for ¢ and d:
Cd + Dc ~ v?Be
Cl¢e —Ad =0

“ b
;"}
So the eigenvalues of the matrix B~ Y(CA~'CT + D) are the natural frequencies v? of the
coupled bending vibration of the blade; and the corresponding eigenvectors ¢ give the‘
mode shape #. A similar procedure is used to solve the equation for the elastic torsion ?‘;
natural frequencies and modes. -’

-
“‘

T

‘4»-

2.4. Aerodynamic analysis

The rotor blade aerodynamic loading is calculated using lifting line theory and stead? G
two-dimensional airfoil characteristics, with corrections for unsteady and three-dimensigy Lo
nal flow effects. The model is applicable to rotors operating in low or high inflow, and. 3
axial or nonaxial flight. The assumptions of lifting line theory are generally well satisfieg
for helicopter rotor blades: that the wing has a high aspect ratio, or more correctly tl %w
spanwise variations of the aerodynamic environment are small. In addition. for thél
rotary wing it is essential to have the capability to treat compressible and viscous flo
effects. which are present to some degree in almost all helicopter operating conditio
These effects are included in lifting line theory by using experimental data for the twé
dimensional airfoil characteristics. Lifting surface theory models offer more accuracy i
the treatment of three-dimensional and perhaps compressible flow effects at low angles
attack. but are no more accurate and cause more difficulties than lifting line theory wh
calculating the loading at high angles of attack. Computational fluid dynamics (CFIX
methods are just beginning to be applied to the type of flows encountered on helicop
rotors. Finally, lifting line theory is far more efficient than lifting surface theory or CF
methods. to the extent that with current computers lifting line theory is probably
only practical approach for a comprehensive analysis of the rotary wing in forward flig

Lifting line theory is not accurate at the tip of a wing or for a close vortex-bladés
interaction. The calculation of the loading at the blade tip is corrected for three-dime
sional effects by using a tip loss factor in the conventional manner of rotor analyses.
calculation of the loading induced by a vortex passing close to the blade is corrected b
using the solution for a model problem, obtained from linear lifting surface thea
(described further below). The steady section aerodynamic characteristics must be ¢
rected to account for unsteady flow effects. For low angles of attack. thin airfoil theo

results are used to calculate the unsteady aerodynamic loading. For high angles of attacig
an empirical dynamic stall model is used. The dynamic stall model must be based on thii
steady, two-dimensional airfoil characteristics in order to be widely applicable. Two sucl
models are implemented in the present analysis. The section aerodynamic characteristich

are also corrected for the effects of yawed flow. 3
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Fig. 4. Rotor blade section aerodynamics.

“The aerodynamic loading is determined by the air velocity at the blade section. Only
Bihe lowest order contribution of each degree of freedom to the velocity is considered
licre. To include higher order terms would not be consistent since the basic elements of
A he acrodynamic model are obtained from first order theories (such as lifting line theory
gand thin airfoil theory). Nonlinear effects. such as stall, are included when they have a
A." tst order influence on the loading. Both momentum theory and vortex theory induced
@¥ivelocity models are included in the present analysis. The momentum theory model has
"ll mpirical corrections for nonideal induced power losses. rotor-rotor interference. and
ground effect; and a linear variation of the induced velocity over the rotor disk due to
rward flight or aerodynamic moments on the rotor. Such a model is very efficient. and
§ an empirical model is reliable when used within its limits. A detailed wake model for a
onumform inflow calculation is also developed for the analysis, using available pre-
crlbed and free wake geometry models.

> A hub plane reference frame is used for the aerodynamic forces. All forces and veloci-
Btics are resolved in the B coordinate system. Figure 4 illustrates the forces and velocities
%of the blade section aerodynamics. The blade pitch angle is ). measured from the refer-
sence plane. The velocity of the air as seen by the moving blade has components uy, up.
mnd ug; U = (u% + ud)'/? is the resultant air velocity in the plane of the section; and
B = tan"'upf/ur is the induced angle. The section angle of attack is then
¥e = 0 + 0,, — ¢. where 0, is the pitch of the aerodynamic zero-lift axis of the section
BFelative to the structural-inertial principal axis at pitch angle 0 (6, may vary along the
Epan, and should not therefore be included in the definition of the section aerodynamic
proefficients as a function of a). The velocity components ur, ug, and up are respectively in
.}. he blade drag direction, radially outward and normal to the hub plane. The aerody-
.,t amic loads on the section are defined as follows: Land D are the aerodynamic lift and
Yrag forces: F. and F, are the components of the total acrodynamic force on the section
resolved with respect to the hub plane coordinates: F, is the radial drag force on the
Blade: and M, is the section aerodynamic moment about the elastic axis. The radial
Morces due to the tilt of F, and F, are considered separately. hence F, consists only of the
Rtadial drag forces. The section lift and drag are

L=}pUc, + Ly,
-3 D= z‘p UZC(d

Where p is the air density. and c is the chord of the blade. (The air density can be dropped
8ince all quantities are actually dimensionless.) The section lift and drag coefficients, ¢,

1
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and c,. are functions of the angle of attack and Mach number. The section Mach number
is M = M,,,U (where M,;, is the rotor tip speed QR divided by the speed of sound). L,, is &
the unsteady aerodynamic lift force. The radial drag force is F, = (ug/U)D = YpUugcc,. 8
This radial drag force is based on the assumption that the viscous drag force on the g
section has the same sweep angle as the local section velocity. The moment about the §

elastic axis 1s

M,= —x,L+ M, + M, =—x,4pU%c, + {pUicc, + M,

where x, is the distance the aerodynamic center is behind the elastic axis. ¢, is the 48
section moment about the aerodynamic center, and M, is the unsteady aerodynamic ' 1
moment. The components of the section aerodynamic forces relative to the hub plane 3

axes are then >

F, = Lcos¢ — Dsing =
F, = Lsind) + Dcosd) =

(Lur — Dup)/U
(Lup + Dug)/U

span of the blade

ac 0 ac
C 1
Tx = —17' dr
ga o ac
C 1
e —Zrdr
aga 0 C
C LF
J= — -x
ga fo ac

a, and by the mean chord Cmean (Which enter the definition of the Lock number also).
The air velocity seen by the blade section is due to the rotor rotation, the hehcopt AT
forward speed and aerodynamic gusts, the rotor and shaft motion and the wake mduced

disk has the dimensionless components My My, and p, in the shaft axis system ‘,j
# = s ~ pjs — p.ks. The rotor wake-induced velocity is 4, = v;/QR, normal to thed
rotor disk and positive downward. A simple model may be used, such as a uniform of{§
linear variation over the disk, or calculated nonuniform induced velocities can be used ,'-'
For the latter case, all three components of the wake induced velocity (in shaft axes) ag
considered. The aerodynamic gust velocity has components ug, vg, and wg in the shafl®
axis system, normalized by dividing by the tip speed QR: V,,, = ugis — vgjs + woké
relative to the rotor. This gust velocity is evaluated at azimuth angle ¥ and radial statiom]
r on the rotor disk. The quasisteady shaft motion and the gust velocity at the rotor hub _
will be included in the advance ratio components. The velocity components ur, up, an O
ug are thus expressed as linear functions of the rotor degrees of freedom (displacemenigE

and velocity of gy, B, and y,), the shaft angular motion (displacement and velocity), thes@
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,,shaft linear velocity components, and the gust velocity components. The coefficients in

\these expressions are functions of the radial station r; the velocity components pu,. y,. and
8 : .}t,; the induced velocity: and are periodic functions of the azimuth angle . In body axes.

-'

4 -the trim velocity vector is fixed with the reference frame. and would therefore tilt with it.

iy Wlth inertial axes however, a tilt of the rotor by the shaft motion results in a small
change in the directions of the components of y as seen in the reference frame. Several ua

: terms in the expressions for uy, up, and ug result from such tilt of the inertial axes relative
to the trim velocity vector. The aircraft body yaw. pitch. and roll will be defined as body

ation of «,, 2, and a, for the blade velocities.
The rotor wake-induced velocity can be obtained from the momentum theory result

Cr
N T
" where 4 = #: + 4 and p? = p? + u?. Empirical correction factors k, and x ¢ are included

T.?for the effects of nonuniform inflow, tip losses, swirl, blockage. etc., in hover and forward
}° flight. An iterative solution of this equation for 4; is necessary; and an empirical ex-

A‘=

: 1 itheory result is not applicable. The wake-induced velocity is reduced when the rotor disk

Yis in the proximity of the ground plane. The effect of the ground will be accounted for

" R .using the following approximate expression [7] for the induced velocity in ground effect:

(Aige = (1 — cosze/ 1622) (A)ogE

R ‘f;rwhere z is the height of the rotor hub above ground level, normalized by the rotor

saradius; and € is the angle between the ground and rotor wake (¢ = 0 for hover and €

‘ g .approaches 90° in forward flight), which accounts for the effect of forward speed. This

j . rexpression compares well with test results, down to an altitude of about one-half rotor

¥ radius. As a first approximation to the rotor nonuniform induced velocity distribution, a

* linear variation over the disk is considered: Ai = Ak, cosy + Kk, sin y), where 4, is the

g -mean value of the induced velocity. Typically x, is positive, roughly 1 at high speed: and

3 -K, is smaller in magnitude and negative. Both k, and x, must be zero in hover. Here the

N followmg expressions are used:

K, = f,cu,‘/(\/;ti + A2 + [4) = f,2uy, — 4fnCu,/Cr
Ky = —felty /(1 + A2 + 1A]) = f,2u, + 4£,,Cy /C

: w1th typically f, = 1.5 and f, = 1.0 [8]. There will also be an inflow variation due to any
f: -net acrodynamic moment on the rotor disk. Hence the differential form of momentum

‘ ':'ftheory gives the last terms in k, and «,, including an empirical factor f,,. With twin-rotor

.-aircraft it is also necessary to account for the rotor-rotor aerodynamic interference in the

" wake- mduced mﬂow velocities. The induced veloc:ty at each rotor is expressed as a linear

Arfvelocuy of the two isolated rotors, calculated as above. Then the trim inflow ratios for
' ‘the two rotors are

Ay = Py + Al + krcosy + kyrsing) + k5 4 (QR)/(QR),
Ay = Mg, + Ap(l + Kercosy + kyr sing) + k3 Ay (QR)/(QR),

i _'where Ky, and k;, are the rotor-rotor aerodynamic interference factors.

i The section aerodynamic characteristics required are the static lift, drag and moment
" coefficients as a function of angle of attack, Mach number, and blade radial station. The
g 'aerodynamic description of the blade also requires 8, the pitch of the axis correspond-
& -ing to a = 0 in the airfoil data, relative to the principal axis at pitch angle 6; and x,, the

" VERT. 82—
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distance aft of the elastic axis to the axis about which the moment coefficient data are j
given. (It is convenient. but not necessary. for 0z, to give the pitch of the zero lift axis, §
and x4 the location of the aerodynamic center.) The two-dimensional airfoil data is used g
in tabular form. The use of airfoil tables is a nearly universal practice in helicopter 3
analyses. The data are linearly interpolated between the table entries. to obtain thed
coefficient values at the specified angle of attack and Mach number.

Three-dimensional flow effects at the blade tips significantly alter the loading. Lifting’
line theory can be formulated as a singular perturbation problem [9]. in which the small g
parameter is the inverse of the aspect ratio, or ¢/R here.- The classical result, which is the,
basis for the present analysis, is the first order solution, which is not valid within dls- i
tances the order of the chord from the blade tip (unless the tip platform has a cusp). The.4
rigorous approach is to obtain an inner solution for the tip region, that can be matched 4
to the loading distribution away from the tip to produce a uniformly valid solution. A
simpler approach is to make use of the fact that the bound circulation must be zero at
the tip and to introduce an empirical function or factor to account for the fall-off of the:}
loading at the tip. Applications of lifting line theory for fixed wings often represent the 3

proportional to the square root of the distance from the tip. The corresponding approach 3
for rotary wings is provided by the solution of Goldstein or Prandtl [8]. which cannot §

trailers is not really consistent with the first-order nature of lifting line theory). The net. i
effect of the reduced loading at the tip can be accounted for however by setting th
loading to zero over a small distance at the tip. Setting the loading to zero gives zer
trailed wake strength, so an alternative approach is to directly move the last traile
inboard by that distance. This can be viewed as modelling the position of the rolled upiig
tip vortex. which usually is slightly inboard of the geometric tip even with a rectanguls
planform. With the rotary wing it is also necessary to account for the correspondin
inboard movement of the tip vortices when they pass under the following blades; bu
that effect is usually implicit in a separate definition of the wake geometry. The interpre
tation of the tip loss for a rotary wing is complicated by the fact that the actuator dis
model (infinite number of blades. hence infinite aspect ratio) can be related to finite span
wing theory; in fact in forward flight the actuator disk is just a circular wing, an
uniform disk loading gives the ideal of elliptical loading. The tip loss effect is a correctior

of the blade loading however, not the disk loading It accounts for the eﬂ"ects introduced‘i‘ ;

is further complicated by the fact that the outer problem, the calculatlon of the induced™
velocity at the bound vortex, can be solved in various ways. Momentum theory can be;}
used, if an empirical multiplicative factor is introduced (that includes the effects of the tip 58
loss on the induced velocity); or the nonuniform inflow distribution can be calculated 22
from a detailed wake model. While the latter method produces a more accurate so]utlon
for the loading, the limit to the validity of lifting line theory near the blade tip remains.: _A‘
As a consequence of this complexity, the tip loss on a rotary wing has been viewed in: 3
several ways [8]: as the reduced effective area of the actuator disk; as the reduced: vz
effective wake cross sectional area due to discrete vorticity in the wake; as the reduoed'
section loading on the blade tip: and as the inboard shift of the rolled up tip vortex.
In the present analysis the correction of the lifting line loading calculation at the tip i
accomplished using the standard tip loss correction of rotor analyses. It is assumed thaf
the blade has drag but no lift outboard of radial station r = BR. The parameter B i§%g
called the tip loss factor. The three-dimensional flow at the blade tip increases the criticakig
Mach number of the tip sections, compared to the two-dimensional flow characteristics. §8
This compressible tip relief may be accounted for by reducing the effective section Machi§
number by the factor f; = M /M, which must be specified at each blade station. The tigh
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iplanform should also be considered in choosing the tip loss factor and compressible tip
glief factors for the rotor blade.
¢ Yawed flow over the blade section may be accounted for using the equivalence
gsumption for swept wings: that the yawed section drag coefficient is given by two-
by Bgimensional airfoil characteristics, and the normal section lift coefficient is not influenced
Rrby yawed flow below stall. Since the wing viewed in a frame moving spanwise at a
welocity Vsin A (where V is the wing velocity, yawed at angle A) is equivalent to an
f'l nyawed with with free stream velocity V cos A, except for changes in the boundary
Mayer, there should then be no effect of spanwise flow on the loading below stall.
K Accounting for the effective dynamic pressure and angle of attack of the yawed section
f relative to the normal sectxon leads to ¢(a) = ¢, ,(« cos? A)jcos? A, cfa) = cg4,p(x cos A)/
cosA Cml®) = Cp cos? A) for the section aerodynamic coeﬁiments in terms of two-
dlmensmnal airfoll characteristics. These results are largely verified by the experimental
data for yawed wings. The section yaw angle is given by

B2 2 2

ur + u
Pyi cosA = [5—7F— P 3
R ur + up + ug
4

_\ Dynamic stall is characterized by a delay in the occurrence of separated flow due to
g the blade motion, and high transient loads induced by a vortex shed from the leading
.-edge when stall does occur. These features are modelled by the following procedure [10].
"It has been found that the dynamic stall delay correlates fairly well in terms of the
“normalized time constant T = ArV/c, with approximate values for lift and moment stall
piof 7, = 4.8 and 1)y = 2.7 [11, 12]. Hence the section lift will be evaluated at the delayed
g angle of attack oy = a(Y — AY,) = o — Ay &, where Ay, = QAt, = 1.c/ur. A maximum
i value of the angle increment should be specified in order to avoid difficulties at small
&Values of ur. The lift coefficient below stall should not be affected by the dynamic stall
B model, rather the stall delay should extend the linear range above the static stall angle of
attack Hence the correction lift coefficient takes the form

‘ 1,01 + ¢,5(0) + Acy

1

o
= a_ (1) —

. f!r
i Including the yawed flow correction this becomes
':1 1
-§ € = cos’A{ [yl cos? A) — ¢,,(0)] + c,m(O)} + Aq,.

§:Here Ac, is the lift increment due to the leading edge vortex shed at dynamic stall, which
EFis discussed below. Similarly a delayed angle of attack is calculated for the drag and
B moment from appropriate time constants t, and 7y, and the corrected section
' aerodynamic coefficients are

1
g = Caypltgcos A) + Acy

¥ cos A

e Cm = Cmyp(@a COS? A) + Ac,
5
8 -including the yawed flow correction. Similar expressions are used for reverse flow
k' (o] > 90°). When the blade section angle of attack reaches the dynamic stall angle ay,, a
**leading edge vortex is shed. As this vortex passes aft over the airfoil upper surface it
" ‘induces large transient loads. The peak incremental aerodynamic coefficients depend on
3 *’the pitch rate at the instant of stall, &c/V. This dependence is approximated by analytical
-expressions based on experimental data [13], with maximum values of approximately
_‘ “Ac; = 2.0 and Ac,, = — 0.65 at high pitch rate. In the present model of the dynamic stall
-loads it is assumed that the incremental coefficients due to the shed vortex rise linearly to

:the peak values in the small azimuth increment Ay, (typically 10° to 15°), and then fall
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linearly to zero in the time Ay, again. Hence the model involves impulsive lift and nose
down moment increases when dynamic stall occurs, which produce the blade motion and
loads characteristic of rotor stall. After these transient loads decay the blade section is ;
assumed to be in deep stall. and dynamic stall is not allowed to occur again until the flow
has reattached. Flow reattachment takes place when the angle of attack drops below the -
angle a,.. Generally a dynamic stall angle about three degrees above the static stall angle
gives good results. Different values of ay,. Ay, and «,, can be used for the lift. drag, and i
moment characteristic if necessary to adequately model the dynamic stall of an airfoil.

An alternative dynamic stall model [14] is also implemented in the present analysis.
An effective angle of attack of the form

Ogyn = & — Tp/|0c/2uqy| sign &

is introduced. where 1, is a function of Mach number and the airfoil section that is.
obtained from oscillating airfoil tests. This angle ay,, can be used in place of %, in the
expression for ¢; given above. with Ac; = 0. Similar corrected angles of attack are calcu-4
lated for the moment and drag coefficients. using appropriate factors t,, and 7. One or
two other dynamic stall models have been developed and described in the literature well
enough that they could also be used. The two models implemented in the present analy-
sis are the ones that are most fully documented. 3
The thin airfoil theory result for the unsteady aerodynamic lift and moment about the§
pitch axis for the rotary wing is [8] :

Lus _¢ ¢ 4

= VB(+ 2x4c/c) + g (¥ + upw)

M, c? ., .

.- VB(l + dx,cfc)® — 77 0 + up)(1 + dx,cfc)

where x,¢ is the distance between the aerodynamic center and the elastic axis. Herej
w = ursinf—upcosf is the upwash velocity normal to the blade surface (with no order
terms); B = dw/dx is the gradient of the upwash along the chord, as due to a pitch rate}}
and V = urcosf + upsind. In this result the order c¢? lift and order ¢®> moment terms haveg
been neglected. Radial flow effects are included in the slender body pressure terms (frong§
the radial derivative w’) and in the contributions to the upwash w. The time derivative W}
includes terms due to the time varying free stream. Corrections for real flow effects on th¢
lift-curve slope and aerodynamic center have been included. The sign changes in revers@
flow are also accounted for [2].

The blade bound circulation is required for the wake induced velocity calculationg
I = $Ucc; + ', Thin airfoil theory gives for the unsteady circulation (below stallj§

r,,,/ac = *CB(l + 2xAch).

3. ROTOR WAKE ANALYSIS

The rotor nonuniform inflow is calculated using a vortex wake model developed fo:
the analysis. The wake analysis involves two tasks: calculation of the wake-induced
velocities and calculation of the resulting aerodynamic loading on the rotor blade. Thé;
blade loading is calculated using lifting line theory, as described above. It is necessary t0g
include corrections for the case of a close blade-vortex interaction: three-dimensionaig§

The induced velocity calculation depends on the strength and geometry of the vorticity it
the rotor wake. The tip vortex rollup process is not calculated in the present analysisg
Several details of the rollup have a major influence on the solution: the effect of the§
vortex rollup on the tip loading of the generating blade; the strength of the tip vortex
when it encounters the following blade; and the core radius when the vortex is fully§
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tolled up. These key features are modelled, not calculated, primarily because the tech-
niques are not well developed to calculate them accurately and efficiently. As a result the
model for the rolled up wake is quite simple, hence efficient, emphasizing the properties
df-the tip vortex—which is in fact the most important component in the rotor wake.
Empirical models are available for the wake geometry in hover. These prescribed wake
p & geometry models are incorporated in the analysis. An existing free wake geometry calcu-
i lation [15] has also been incorporated. This analysis efficiently calculates the distorted
Tt -geometry of the tip vortices of the rotor in forward flight.

3.‘l. Nonuniform wake-induced velocity

‘ Fu! Conservation of vorticity on a three-dimensional wing requires that the bound circu-
,;!}ulatlon is trailed into the wake from the blade tip and root. Radial variation of the bound
? circulation produces trailed vorticity in the wake. parallel to the local free stream direc-
; ktx’on at the instant it leaves the blade. Azimuthal variation of the bound circulation will
produce shed vorticity. oriented radially in the wake. The strength of the trailed and shed
g‘i ‘yorticity is determined by the radial and azimuthal derivatives of the bound circulation
i34, at the time the wake element left the blade. The lift and circulation are concentrated at
the tip of the rotating wing, due to the larger dynamic pressure there. Consequently the
trailed vorticity strength is high at the outer edge of the rotor wake. and the vortex sheet
quickly rolls up into a concentrated tip vortex. The formation of this tip vortex is
influenced by the blade tip geometry. With square tips, much of the roll up has occurred
by the time the vortex leaves the trailing edge. The rolled up tip vortex quickly attains a
" strength nearly equal to the maximum bound circulation of the blade. The tip vortex has
a small core radius, depending on the blade geometry and loading. The vorticity in the
Hip vortex is distributed over a small but finite region, called the vortex core, due to the
scosity of the fluid. The vortex core radius is defined at the maximum tangential
velocity. The vortex core is an important factor in the wake induced velocity, since it
imits the maximum velocity induced near a tip vortex. Only a limited amount of data on
s"the vortex core radius is available, particularly for rotary wings. There is an inboard
vortex sheet of trailed vorticity in the wake, with opposite sign as the tip vortex. Since the
zgradient of the bound circulation is low on the inboard portion of the blade, the root
3 vortex is generally much weaker and more diffuse than the tip vortex.

. The trailed and shed vorticity of the rotor wake is created in the flow field as the
blades rotate, and then convected with the local velocity of the fluid. This local velocity
onsists of the free stream velocity and the wake self-induced velocity. The wake is
ransported downward, normal to the disk plane, by a combination of the mean wake
nduced velocity and the free stream velocity. The wake is transported aft of the rotor
P disk by the inplane component of the free stream velocity. The self-induced velocity of
" g the wake also produces substantial distortion of the vortex filaments as they are con-
: vected with the local flow. Thus the wake geometry basically consists of distorted inter-

lockmg helices, one behind each blade, skewed aft in forward flight.

f  The strong concentrated tip vortices trailed in helices from each blade are the domin-
£ ant feature of the rotor wake. Due to its rotation, a rotor blade encounters the tip vortex
E' from the preceding blade in both hover and forward flight. These tip vortices produce a
E-highly nonuniform flow field in which the blades must operate. For close vortex-blade
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core radius. economical approach is to use lifting line theory with a correction factor for close
: vorticity in vortex-blade encounters, based on a lifting surface solution for an infinite aspect-ratio,
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: tip vortex i velocity as required to obtalp the correct loading by ll'ftmg line thepry..An examination
tex is fully of measured rotor airloads indicates that the vortex induced loading is generally high

I when the blade first encounters a vortex, but decreases as the blade sweeps over the




120 WAYNE JOHNSON

vortex. There is evidently some phenomenon limiting the loads [16, 17]. Local flow §
separation due to the high vortex-induced radial pressure gradients on the blade appears §
at present to be the most likely explanation for the reduction in loading after the initial ‘§
encounter. Bursting of the vortex core induced by the blade is aiso a possibility. Another 8
possibility is that the vortex interacts with the trailed wake it induces behind the blade; §
with the effect of diffusing the circulation in the vortex. The phenomenon limiting vortex 2
induced loads after the initial encounter will be modelled by increasing the core radius of 3
a segment after it encounters the blade, with upstream propagation along the vortex to J
produce the loads reduction [15]. An increase in core size is a convenient means to 3
reduce the influence of the vortex: the exact physical explanation for this phenomenon is. X%
at present speculative. 1

The rotor wake induced velocity is calculated by integrating the Biot-Savart law over &
the vortex elements in the rotor wake. The wake strength is determined by the radial and 3
azimuthal variation of the bound circulation. For the wake geometry a simple assumed"§
model. experimental measurements. or a calculated geometry can be used. With the;
helical geometry of the rotary wing wake, it is not possible to analytically evaluate the id
induced velocity. even if the self-induced distortion of the wake is neglected. A direct
numerical integration of the Biot-Savart law is not satisfactory either. because the large
variations in the induced velocity at close vortex-blade encounters requires a small
integration step size for accurate results. It is most accurate and most efficient to calcu-,
late the rotor nonuniform inflow with the wake modelled using a set of discrete vortex-|
elements. For each vortex element in the wake the induced velocity at a point in the flow J
field is evaluated by an analytical expression, and the total induced velocity is obtained-{§
by summing contributions from all elements. The tip vortex is well represented by a
connected series of straight-line vortex segments, with a small viscous core radius. The. 2§
inboard trailed and shed vorticity can be modelled by planar, rectangular vortex sheets, 3

inboard dee is less important to the nonuniform inflow calculation than the tip vor? )
tices, so a more approximate model may be used. The approximations involved i#4
modelling the rotor wake using a set of discrete vortex elements include replacing thé{s

strength); and perhaps physical approximations such as the use of line elements -f:;
represent the inboard vortex sheet. The development of a practical model involves aig
balance between the accuracy and efﬁmency resulting from such approxlmatlons

radially and azimuthally. Assuming a linear variation of the bound circulation between:
these known points results in a wake model consisting of vortex sheet panels (Fig. 5) &
Assume that the blade bound circulation I'(r. ) is given at the radial stations r; (i = 1 to'#§
M) and at the azimuthal stations §; = jAy (j = 1 to J, Ay = 2r/J). Let ¢ be the age of;
vortex elements in the wake (¢, = KAy, -k = 0 to o). The strength of the trailed and shed )
vorticity of a wake element is determined by the bound circulation of the blade at the:%
time the vorticity was created. Consider a wake panel of age ¢ = ¢, t0 Py+1, arising’
from the blade between radial stations r; and r,,,. The strength of the vorticity in this:
panel is determined by the bound circulation at the time it was created, which is knowm 3
at the four corners of the panel. The bound circulation corresponding to the panel
leading edge is that at time  — ¢,, where  is the current blade position (dlmenswnless,
time) and ¢, is the age of the panel at the leading edge. The bound circulation corre- 3§
sponding to the panel trailing edge is that at  — ¢+, Ay earlier than the leading ed
The difference between the bound circulation at r; and r;,,; defines the trailed vorticity ‘,‘
strength d, which is constant radially along the panel assuming a linear variation of the%j
bound circulation from r; to r;+,. When the bound circulation varies azimuthally, how- }
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N\

VORTEX
WAKE
PANIELS

Fig. 5. Wake model with bound circulation calculated at discrete points on rotor disk.

E ever. the trailed vorticity strength & is different at the panel leading and trailing edges: a
flinear variation of J in the direction of the trailed vorticity will be used. Similarly, the
P difference between the bound circulation at ¢ — ¢, and ¥ — ¢4, defines the shed
B vorticity strength y, which is constant azimuthally along the panel (for a linear azimuthal

¥. variation of the bound circulation) but varies linearly from the left to the right panel

‘f edges.

~ A vortex sheet panel in the wake may be economically approximated by shed and

8- trailed line vortices located in the middle of the panel, with a large core to avoid the
:,induced velocity singularity near a vortex line. A vortex lattice model of the rotor wake is
Ex produced by collapsing all the wake panels to such finite strength line segments. Since
® the line segments are in the center of the sheets, the points at which the induced velocity

and bound circulation are evaluated lie at the midpoints of the vortex lattice grid. both

¥ radially and azimuthally. Simply collapsing the shed and trailed vorticity in the wake

panels to lines, the strength of the line segments will vary along their length. As a further

f  approximation. a stepped (piecewise constant) variation of strength can be used instead
B- of the linear variation, with the jump in strength occurring at the center of the segment
B where it crosses the other vortex line. Such a vortex lattice wake model with constant
;- strength line segments corresponds to a stepped distribution of the blade bound circu-
3 lation, azimuthally and radially (with the jumps occurring midway between the points

where the circulation is evaluated).
The rotor vortex wake quickly rolls up at the outer edge to form a concentrated tip

vortex. Because of the dominant role of the tip vortex in the flow field. it is important to
model these rolled up tip vortices in the induced velocity calculation. The lesser role of
the inboard wake vorticity allows a more approximate model to be used for it. Let
I nax(¥) be the radial maximum of the blade bound circulation. It is assumed that in the
far wake. where the rollup process is complete, that all of the bound circulation I',, is
concentrated in the tip vortex. The tip vortex will be modelled by a line segment with a
small but finite core radius. When I',,, varies azimuthally, the tip vortex strength varies
along its length. Furthermore, the inboard portion of the wake will be modelled by a
single sheet panel. with trailed and shed vorticity as described above. This far wake
model may be viewed as corresponding to the circulation distribution sketched in Fig. 6.
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Fig. 6. Equivalent circulation distribution for models of far wake, rolling up wake. and near
wake.

The linear variation for I' = 0 at the root to I' = I'y,, at the tip defines the single

inboard sheet, and the sharp drop from I, to zero at the tip defines the tip vortex line. .5
(This circulation distribution should not be associated with the actual bound circulation 38
at the rotor blade. Rather it is an approximation for the vorticity distribution in the far ~
wake, which is determined by the rollup process. Since an analysis of the rollup is not “§
attempted here, the actual vorticity distribution over the inboard sheet is not known. An §
approximation involving constant strength determined by the known maximum bound §
circulation is therefore appropriate. This far wake model is computationally efﬁcxent, :

since it depends only on the maximum bound cnrculatlon)

strength less than the maximum bound circulation. Therefore the tip vortex rollup must 3 :
be included in the wake model. Figure 6 sketches the radial circulation distribution ¥
assumed, which produces the model for the rolling up wake. The circulation goes from 38
zero at the root to I',,, at radial station r.,; to f,, I max at the tip. Thus there is a line tip - 38
vortex of strength f,,I' .., and two inboard wake panels. The rollup process will take &
place over the wake from ¢ = 0 to ¢ = ¢,,. The position of the maximum circulation 38
and the rollup fraction will vary linearly from r,, and f,, at ¢ =0, tor =1 and f = 1 at 3
¢ = ¢... An analysis of the rollup process is not part of the present work, so the &
parameters ¢,,, r.,, and f;, must be prescribed inputs to the calculation procedure. Note
that the velocity induced by the rolling up wake also depends only on the mdx1murn
bound circulation I',,,,. b

Just behind the reference blade, where the induced velocity is being evaluated., it is the :
detailed radial and azimuthal variation of the wake vorticity which is important, not the 3j
rollup process (except for the influence of the rollup on the tip loads). Hence for the near g
wake of the reference blade the full vortex panel representation is retained. The corre- ‘i
sponding radial distribution of the circulation is also sketched in Fig. 6 for the near %g
wake; in this case it is the actual blade bound circulation distribution. The tip vortex J
rollup is often partially complete at the blade trailing edge, so a line vortex at the tip is :
included, with strength equal to a fraction f,,, of the calculated bound circulation at the §
most outboard radial station. The complete model of the rotor wake is shown in Fig. 7. .38
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..The very first panels of the near wake require special consideration. In order to
B8 correctly calculate the unsteady aerodynamic effects, the shed wake is stopped a quarter
B8 chord behind the bound vortex [18]. The singularity near the side edges of the trailed
ortex sheets presents a difficulty in calculating the induced velocity at a point due to the
mmediately adjacent panels. Thus if the induced velocity is to be calculated near a

i point well away from the edges of the single panel. This difficulty can be also avoided by
i} using line vortex elements for the trailed vorticity in the near wake, or by moving the

%:; panel side edge away from the collocation point. Finally, the front edges of the individual

88 hub plane orientation will be updated based on a new induced velocity estimate. In
B%: contrast, the tip path plane orientation is well defined by the operating condition, hence

il evaluated at the radial stations r, along the rotor blade. The position vector of the rotor
¥:blade is ry(r,). The wake-induced velocity is also required at points in the flow field off the

ROLLING
UP WAKE

Fig. 7. Sketch of wake model for nonuniform induced velocity calculation.
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aerodynamic interference: (b) at the other rotor hub for rotor-rotor acrodynamic interfer-
ence: (c) at an arbitrary point in the flow field: and (d) at the reference blade of the other:
rotor. for detailed rotor-rotor interference. For the first two. only the mean value of the'
induced velocity will be used in the present analysis. The induced velocity distributionZ§
over the disk of the other rotor can be used in the present analysis only if the two rotors;
have the same rotational speed; so for the single main rotor and tail rotor ccnfiguration§
the rotor-rotor interference can be accounted for only in terms of the induced velocity at'§
the rotor hub. The position vectors of these points off the rotor disk are required relative. :
to the hub-centered. tip-path plane coordinate system of the rotor. A

The geometry of the tip vortex behind the blade will be defined by the vector r,(y, ¢), :
where y is the present azimuth angle of the blade and ¢ is the age of the vortex element. }
The wake geometry is required at the discrete azimuth positions ¥, = /Ay and wake ages
¢ = kAy. where I ranges from 1 to J (one revolution of the blade, with Ay = 2n/J) and
k ranges from zero to the specified number of wake spirals for the induced velocity:’
calculation. The tip vortex geometry behind the other blades of the rotor can be obtained 3§
from r, at the appropriate azimuth angle. The tip vortex elements are created at the ;
blade tip (r, at radial station r = 1). convected with the free stream velocity p and
distorted by the self-induced velocity in the wake. The rotation of the wing together with:
convection by the free stream velocity produces the basic helical geometry of the rotor
wake. The resulting geometry is

r(.@) = 1y — ¢) + ud + D(J.¢)

where D(y. ¢) is the distortion due to the wake self-induced velocity, and g is the free 138
stream convection velocity in the tip-path plane coordinate frame. Similarly the geometry §
of the inboard wake sheet will be defined at the root and tip edges. trailing from the ;2
blade position r, at radial stations r = r,,, and r = 1 respectively. The distortion D will 38
be different for the tip vortex and the inboard sheet. The induced velocity calculatlon’_
may require the wake geometry beyond the point where the stored distortion ends. For }
this portion of the wake. rigid geometry will be used. Consider the distortion when the ¥
age ¢ is greater than the age of the last element in the known distortion. ¢,,,,. The wake
geometry will be extrapolated from ¢,,, to ¢. using only vertical convection due to the i
mean induced velocity: ‘

D(y.¢) =

where K, is defined below. Note that the azimuth angle of the blade at the time the wake ;
element was created, ¢ — ¢. has been held constant. E

For the self-induced distortion of the rotor wake geometry. the following models are
considered: (a) rigid or prescribed wake. with contraction and two-stage convection; and "
(b) a calculated free wake geometry. The prescribed wake geometry is defined by theﬂ
radial and axial coordinates D, and D.. such that 3

D(w - d) + d’]asls ¢Iasl) - (¢ - ¢lasl)K2k

D = D,cos{y — ¢)i+ D,sin(y — ¢)j + D,k

where D, and D, depend only on the wake age ¢. For a rigid wake model it is assumed? _;‘,}‘
that all elements are convected downward by the mean induced velocity at the rotor disk, 4%

with no contraction: D, = — ¢4, D, = 0. A more general model consists of two-stage .38
convection: ;
D. = _Kld)s ¢ < 27T/N
*7 | —K,;2n/N — K,(¢ — 2n/N), ¢ > 2n/N

wake, the radial displacement is modelled as
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i

i (r, = 1 for the tip vortex and the outside edge of the inboard sheet and r; = r,, for the
1} inside edge). Hence the rigid wake geometry is determined by the parameters f, fi. K.
i Hand Ko, which may be different for the tip vortex and inboard sheet. Alternatively, the
‘) gonstants K, and K, can be specified, instead of f; and f;. This form for the prescribed
5  wake geometry of a hovering rotor was introduced by Gray [19]. Landgrebe [20] used
.;a perimental model rotor flow visualization data to develop equations for the constants
K,, K2, K3, and K as a function of Cy, Cr/o and the rotor twist. Separate equations are
' _deﬁned for the tip vortex and for the sheet tip and root edges. Kocurek and Tangler [21]
. developed revised expressions for the tip vortex constants based on experimental data
pom low aspect-ratio two-bladed rotors,

The blade bound circulation is calculated at discrete points on the rotor disk:
MY, = I (ri, ¥)). The solution is periodic, so the azimuthal points cover one revolution of
the blade: y; = jAy for j = 1 to J(Ay = 2r/J). The radial stations r; (i = 1 to M) are a
R subset of the aerodynamic loading radial stations. Except for the near wake. the vorticity
-5 rength in the present model actually depends only on the maximum circulation I,
fined as the value of I';; with maximum magnitude over all radial stations r; at a given
gyazimuth ;. Summing the contributions from all vortex elements in the wake gives the
‘ mduced velocity as the product of the blade bound circulation and influence coeflicients:

J 1 M
= jg:l erj + =Z— ;1 FUCU

:l’he second term is due to the near wake (extending from ¢ = 0 to ¢ = KAy behind the
ference blade at azimuth angle ¥ = IAy). A set of influence coefficients is obtained for
ktach point in the flow field at which the induced velocity is calculated. At a given
fazimuth angle §, the field points consist of the induced velocity points along the rotor
Bblade span: perhaps the induced velocity points along the blade of the other rotor, or at
Mithe hub of the other rotor; and perhaps the points at the wing-body, horizontal tail.
Wfvertical tail. or an arbitrary field point.
B The calculation of the influence coefficients proceeds as follows. The outermost loop

kinvolves the dimensionless time , which is also the azimuth angle of the reference blade.
The solution is periodic so the induced velocity is evaluated for Y = 0 to 2m (at the
Miscrete points ¥, = IAy, I = 1 to J). For a given y, the position vectors at which the
finduced velocity is required can be evaluated. Next there is a loop over all the blades of
fthe rotor (m=0to N — 1, m =0 is the reference blade). The azimuth angle of the m-th
yblade is ¢, = ¥ + m2n/N = (I + mJ/N)Ay. Finally there is a loop over the wake age
Bd = kAY (k = 0 to the maximum extent of the far wake). The blade specification plus the
kwake age determines the vortex panel being considered, extending from ¢ to ¢ + Ay
Bbehind the m-th blade. Given ¥, and ¢. the position vectors of this wake panel can be
Bevaluated: the end points of the tip vortex line segment, and the four corners of the
Binboard sheet. The wake strength at the panel leading edge is determined by the bound
¥eirculation at y,, — ¢, and the strength at the trailing edge by the bound circulation
fat ,, — ¢ — Ay. These azimuth angles define to which influence coefficients the induced
velocny of this panel contributes. The wake age determines whether the panel considered
gis part of the near wake, the rolling up wake, or the far wake models (as described above).
The near wake model is only used behind the reference blade (m = 0), and is not used in
calculating the velocity at points off the rotor disk. The far wake model consists of a tip
fvortex line segment and a single inboard wake panel. The rolling up wake model has two
“inboard wake panels. The near wake model consists of a tip vortex line segment and
8separate inboard wake panels between the bound circulation radial stations. The induced
'velocity expressions for these elements give the contributions to the influence coefficients.
:The contribution of the bound vortices of the other blades is also included.

By this procedure the influence coefficients are calculated for a given wake geometry.
Then the induced velocity v can be evaluated from the circulation estimate as required
f'during the solution for the blade motion and helicopter trim. The velocity v is obtained




126 WAYNE JOHNSON

in the tip path plane coordinate system. Hence it must be transformed to the hub plane:4

by the two rotors; sign changes for a clockwise rotating rotor: and a possible azimuthal i§

phase difference between the two rotors [2]. ) '

The nonuniform inflow calculation can be simplified in hover or vertical flight due to ¥
the axial symmetry of the wake geometry. For the hover case the influence coefficients
will be the same for the induced velocity at all azimuth angles, except for an azimuth shift§

and axis rotation: -
cos(yy — AY) —sin(y — Ay) 0

Ciy = IAY) =| sin(y — AY) cos(y — AY) O | Cj_ys (¥ = AY).
0 0 1

Even in hover the rotor may have a net pitch or roll moment (with offset hinges or a §j
hingeless rotor) if the center of gravity is offset from the shaft. Hence in general the hover"i :
case will not involve induced velocity and bound circulation independent of azimuth.%§
angle. An accurate calculation of the induced velocity of a rotor in axial flight requires

¢

cally over the distance h between successive sheets, as sketched in Fig. 8. The axial 4§
convection velocity in the far wake is taken from the prescribed wake model: §
v = —k-p,, + K,, giving for the spiral axial spacing h = 2nv. The tip vortex elements !
are spread vertically to form a vortex sheet with axial and circumferential components
There is a corresponding axial root vortex from the inboard trailing vorticity. The she
vorticity is spread vertically to form a vortex sheet. This wake model extends L turns (a
axial distance Lh) beyond the last spiral of the detailed wake model from each blade.

The induced velocity of a finite length line vortex element must be evaluated. Considers§
an element of length s, with circulation varying linearly between I'y and I', at the end.§
points. The induced velocity is required at the point P, defined by the position vectors il
and r, from the ends of the segment to P. The Biot—Savart law gives the induced velocit

~

LAST SPIRAL
OF DETAILED
WAKE MODEL
V\\ —_ e
~
~
° g
AXIAL |
ROOT |
VORTEX
| Pi+1
INBOARD
SHED | AXIAL AND
VORTEX \ SPIRAL VORTEX
SHEET \ SHEETS ON
| \ WAKE BOUNDARY
——
~
S~

Fig. 8. Far wake model for hover or vertical flight.
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¥ !

Bédue to this line segment:

C,‘ Av = — —
il ' 4n

R :
Wyhere r is the vector from the element do on the segment to the point P, and r = [r|.
HEvaluating the integral gives an expression of the form

i, Av = I'f\(ry, 1) + Iyfy(ry.ry).

1 J‘Frxda

r3

®A similar result is obtained for a line segment with a stepped circulation distribution. A
Bipossible model for the tip vortex viscous core is solid body rotation, which implies that

Bl the vorticity is concentrated within the core radius r, (defined at the point of maxi-

fum tangential velocity). The influence of such a vortex core is accounted for by multi-

} ying Av by the factor min(r2/r2, 1), where r,, is the minimum distance from the vortex
fline (including its extension beyond the end points of the segment) to the point P.
EMeasured vortex velocity distributions show that a significant fraction of the vorticity is
poutside the core radius however. Hence a distributed vort1c1ty core model is preferred,
i Fwhich is obtained by multiplying Av by the factor [15] r2/(rZ + r2). This factor implies
fthat one-half of the vorticity is outside the core radius. and hence for a given total
pcirculation the maximum tangential velocity (at r.) with this core model is one-half that
Fobtained with solid body rotation.
k- A lifting surface theory solution has been developed for the vortex induced loads on an
if?- finite aspect-ratio. nonrotating wing encountering a straight, infinite vortex at an angle
with the wing [22]. The vortex lies in a plane parallel to the wing, a distance h below it
Fand is convected past the wing by the free stream. The distortion of the vortex line by
finteraction with the wing was not considered. In linear lifting surface theory, the blade
.' nd wake are represented by a planar distribution of vorticity. This model problem was
Biolved for the case of a sinusoidal induced velocity distribution, with wave fronts parallel
to the vortex line. An approximate solution was obtained by fitting analytical expressions
jo the numerical solution for sinusoidal loading. The vortex induced velocity distribution
an be obtained by a suitable combination of sinusoidal waves of various wavelengths,
'  nd the same superposition gives the vortex induced loading from the sinusoidal loading
¥solution. The approximate solution is not valid for extremely small wavelengths, but the
jrange of validity is sufficient to handle the cases arising in rotary wing applications. For
Lhe velocity induced along the wing span by a vortex of strength I':

y W r (—rsin A)
} ~ 2n(c/2) (r sin A)? + h?

f(where r and h are here divided by the wing semichord) the approximate lifting surface
prolution for the section lift takes the form

s = pVIF(rsinA, h A).

The corresponding lifting line theory solution for the vortex induced loading can be
pobtained in the form
] L, = pVIG(rsin A, h).

EFor each line segment it is determined whether it is close enough to the blade for lifting
isurface effects to be important. If so, the induced velocity contribution of the line seg-
ement is multiplied by the ratio L;,/L;.. Then the blade loading calculation from lifting line
:theory will give the correct vortex induced loads.

The use of a large viscous core radius after a blade-vortex interaction will be allowed,
hto model such effects as vortex induced stall or core bursting, which limit the induced
iloads. Let ¢,...() be the age of the tip vortex segment which first intersects the following
g'blade, with the generating blade at azimuth angle y. Then a larger core radius r, is used
.if the line segment age is greater than ¢,(y). The transition at ¢, occurs initially a fixed
‘increment Ag, after the intersection at ¢;,,., and then propagates up the tip vortex at a
b rate V, = 0¢/dy. The wake age ¢;,... at the first blade-vortex intersection can be deter-
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mined by examining the projection of the tip vortex wake geometry r, (. ¢) on the disk ;
plane.

The induced velocity of a planar rectangular vortex sheet element is also required.
velocity is to be evaluated at a point P in the flow field. The vortex panel location isg
defined by the vectors ry, r. r3, and ry from the four corners to the point P. The strength:#
of the sheet is defined by the circulation value at the four corners. This panel is approxi- 3
mated by a planar rectangular sheet with sides s and ¢. The trailed vorticity 0 and shed

gives the induced velocity of this vortex sheet:
1 rx o
Av = — E f r3 dA. ?:.

Evaluating the integral gives an expression of the form
Av =y =T3)vy + (Fy =Ty + (Fy — )V + (T3 — Ty)vs

where the subscripts ¢ and s refer to the trailed and shed vorticity respectively and the v v
vectors are all functions of ry, r;, ry, and r,.

There is a logarithmic singularity in the velocity induced at the vortex sheet side edges =
which is avoided by replacing the trailed or shed vorticity by a line segment with a large "4
core radius if the point P is too near an edge or corner. An economical approximation is. =¥
to replace the vortex sheet by a line segment with a large core size to eliminate the; 3%
singularity of the induced velocity near a line (in this case the core does not have physical %8
significance, rather it is just a convenient means for limiting the velocity magnitude). [

3.2. Free-wake geometry

The present analysis incorporates an existing method [15] for calculating the free wak?,,_f
geometry of a single rotor in steady state flight, out of ground effect. This model is not 28
applicable in hover, and only calculates the distorted geometry of the tip vortices. Several 4
other free wake geometry analyses are also available. The method incorporated here 0
appears to be the most sophisticated, and is also quite economlcal =

wake. The dlStOI‘thl’l of the tip vortex geometry from the basic helix is defined as a vector‘
D,(y. d), giving the displacement of the wake element with current age 6 which wasr
created when the blade was at azimuth angle . A tip path plane coordinate frame is; 3§

the induced velocity at each wake element. The outer loop in the calculation is angg.
iteration on the wake age 8. The induced velocity q(¥) is calculated at all wake elements
for a given age d and all azimuth angles . Then the increment in the distortion as the:
wake age increases by Ay is

D, 8) = Dy, 6 — AY) + Ayq(y)

An efficient calculation of the wake geometry requires many variations in this basm )
procedure. The near-wake and far-wake scheme for reducing the computation is used.'}
The first time the induced velocity is evaluated at a point in the wake. the contributions 3
from all wake elements must be found. For subsequent evaluations of the induced vel- 38
ocity at that point, only the induced velocity due to the nearby wake elements are. 3% 0
recalculated. The other major consideration for minimizing the computation is the<
matter of updating the induced velocity calculation. At a given point in the wake geo-+d¥
metry calculation, there is a boundary in the wake between the distorted geometry andg
the initial, rigid geometry. The distortion has been calculated between the rotor disk and'
the boundary; downstream of the boundary the wake is undistorted. As time increases by
Ay, the entire wake is convected downstream, and the rotor blades move forward by A!I{;‘
adding new trailed and shed vorticity at the beginning of the wake. If there were no B
distortion of the wake during the time Ay, then the induced velocity at a given wake ¥
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would not change except for the contributions from the newly created wake
Bvorticity just behind the blade. Thus the normal procedure consists of calculating the

frecalculated at the boundary only, by summing the contributions from all elements in the
Bwake. In general updating. the induced velocity is recalculated at all points in the wake

ggreater. General updating is typically done every 180°. General updating cannot be done
goften if the amount of computation is to be kept low, but it does improve the accuracy
Eand convergence. Numerous techniques for secondary improvements in the efficiency and
Baccuracy were also included. The distorted wake geometry is required for m revolutions,
fwhere m decreases with forward speed. A single iteration of the free wake analysis

(To be concluded)
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DEVELOPMENT OF A COMPREHENSIVE ANALYSIS
FOR ROTORCRAFT—IL. AIRCRAFT MODEL,
SOLUTION PROCEDURE AND APPLICATIONS
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; Bescribed. Particular emphasis is glvcn to descnblng the reasons behind the choices dnd chIsmns inv ol»ed in
Pronstructing the model. The analysis is designed to calculate rotor performance, loads and noise: hellcopter
Bivibration and gust response: flight dynamics and handling qualities: and system aeroelastic stability. It is
Kjntended for use in the design, lesung and evaluation of a wide class of rotors and rotorcraft and to be the basis
for further development of rotary wing theories, The general characteristics of the geometric. structural. inertial
:and aecrodynamic models used for the rotorcraft components are described. including the assumptions intro-
‘ Ao uced by the chosen models and the resultmg capabilities and limitations. Finally. some examples from recent

1. AIRCRAFT MODEL

@\ general two-rotor aircraft is considered, with rigid body and elastic motion of the
Hairframe. The model is applicable to the case of a rotor or helicopter on a flexible
upport in a wind tunnel as well. An arbitrary, nonlinear representation of the aircraft
geometry and trim orientation is included, since all that requires is properly defined
®rotation matrices. An orthogonal mode representation of the body elastic motion is used.
fThe modal approach is efficient, yet allows a completely general representation of the
jeirframe. The airframe structural vibration modes must be obtained from a separate
.'A palysis. The linearized equations of motion for the rigid body degrees of freedom are
used in the calculation of the aircraft vibration and transient motion. Linearized equa-
Ltions are consistent with the assumption in the rotor analysis that the perturbation shaft
fimotion is small. The trim orientation angles of the helicopter can be large however.
. Aerodynamic forces on the wing-body. horizontal tail and vertical tail are modeliled.
Frincluding control surfaces. Static aircraft aerodynamic characteristics are used. which
R must be defined based on experimental results. Current theories are not able to accu-
';'ratcly and reliably calculate the aerodynamic loads for the geometries and operating
b conditions of the typical helicopter fuselage. The aerodynamic characteristics are speci-
#fied separately for the tail surfaces since the angle of attack and dynamic pressure may be
Wdifferent at the tail due to interference effects. An empirical model for the interference
wetween the rotors and the airframe is included in the present analysis. It is also possible
to calculate the mean rotor-induced velocity at the airframe components as part of the
-nonuniform inflow analysis. The generalized aerodynamic damping and control forces on
g the airframe elastic modes are included: these terms should be estimated for the fre-
R'quency of the principal excitation of the mode. The airframe aerodynamic representation
B is basically a quasistatic model however. High frequency aerodynamic forces on the
; 'fuselage and tail can be important for some problems, but the theories to calculate these
forces are even less well developed than the theories for the static forces, particularly on a
Fhelicopter. for which the rotor-induced flow field and separated flow eflfects are major
B:factors. The technology is well enough developed to calculate the body-induced interfer-
tence flow at the rotor disk, at least with sufficient accuracy to model the general features
bof the interaction. Such a calculation can be readily coupled with the rotor aerodynamic
solution, but is not included in the present analysis.
- The rotational speed degrees of freedom of the two rotors, coupled through the drive
f system. can be important factors in the helicopter dynamics. To complete the equations
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186 WAYNE JOHNSON
of motion for these degrees of freedom, a model for the drive train is required. mcludmg N
the engine dynamics and a rotor speed governor. An elementary model of the trans. Sl
mission and engine dynamics is used in the present analysis, so that at least the principal .
features may be included in the calculations. .E

1.1 Aircraft configuration definition
The aircraft flight path is specified by the velocity magnitude V. and the orientation of &
the velocity vector with respect to earth axes. The velocity vector has a yaw angle Y, 38

and a pitch angle 0¢p. The aircraft attitude with respect to earth axes is specified by the o

trim Euler angles, first pitch 0y and then roll ¢Fr. The rotation matrix Rpy between the :
velocity axes (V system) and the body axes (F system) is defined by these four dngles
Airplane convention is followed for the coordinate systems—x is positive forward, y
positive to the right and z positive downward [1]. The velocity of the aircraft is ‘
V = V Rgyiy. with components in the body axes. The acceleration due to gravity is B
g = gkg, where in body axes

ke = —sinOprip + cosOpr sindprjr + cospy cos prrky

The rotor hub position is specified by the x. v and z coordinates in the body axes: ¥
relative to the aircraft center of gravity position. The rotor orientation is defined by the - ?"_“
rotation matrix Rsr between the shaft axes (S system) and the aircraft body axes (F .48
system). For example, the orientation of a main rotor relative to the body axes is
specified by a shaft angle of attack and a roll angle. The orientation of a tail rotor is
specified by a cant angle and a shaft angle of attack. The position and orientation of thé-
rotors relative to the body axes are fixed geometric parameters. So the components in‘t
shaft axes of the velocity seen by the rotor are

—teis + jyjs + p: ks = VRsrRrv Iy

The sign of the lateral velocity p, must be changed for a clockwise rotating rotor; and fo
the second rotor the velocity components must be multiplied by (QR),/(QR),. The’A8
quasistatic hub motion and the gust velocity at the rotor hub will be included in t
advance ratio components:

—pyis + s + ks = Rsp Rey (V + ug)iv + vgjy + weky)

component ug positive rearward, lateral component vg positive from the right and ver
cal component wg positive upward. The components in the body axes are then ‘

(llGi + ij + wg k)p = RFV (I‘Gi + ij + H’Gk)y
The components in the rotor shaft axes are
(ugi — vg) + wgk)s = RsrRpy(—ugi — vgj — weky

Hence the matrix Rg = (—ii + jj — kk)RszRpy defines the transformation of the gus
components to shaft axes. (Also, for a clockwise rotating rotor the sign of vg is changed; 3
and for the second rotor the gust velocities must be multipled by (QR),/(QR),.) ”

The control variables included in the rotorcraft model are collective and cyclic pitch @
the two rotors and the aircraft controls. which consist of engine throttle 0,, wing flaperos
angle é,. wing aileron angle d,, elevator angle d,. and rudder angle §,. The control vec
is thus

y= [(00 01: Hls)l (00 614: 91:)2 5[ 6e 5a 5r Bl]T

stick d,. pedal J,, and throttle 4,:
vp=[006.06,6,6]"
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80, Aircraft analysis

EiThe aircraft motion consists of the six rigid body degrees of freedom and the elastic
pee vibration modes. A body axis coordinate frame with origin at the aircraft center of
gavity (the F system) is used for the description of the motion. Airplane practice is
Bllowed for these axes—x is forward. y is to the right and z is downward. The coordinate
Fame used is not a principal axis system: moreover, the airplane practice of aligning the
gaxis with the trim velocity i1s not followed, since for rotorcraft it is necessary to
ansider the hovering case. The parameters of the first rotor are used in making quanti-
8s dimensionless and in normalizing the aircraft equations of motion. With the hub
rees in rotor coefficient form it is convenient to normalize the equations by dividing by
he characteristic inertia (3N 1,).

E: The linear and angular rigid body motion of the aircraft is defined in the body axes.
Fhe linear degrees of freedom are xp, vr and z;. These variables are dimensionless based
Pn the rotor radius R thus the velocity perturbations are normalized using the rotor tip
peed QR rather than the forward speed V as is airplane practice. The angular degrees of
freecdom are the Euler angles yp. 0 and ¢f (yaw. pitch and roll). Then the linear and

up = Xpip + Vrjr + Zekp

wp = Re(d.)FiF + ér.ir + lﬁrkr)

¥here
1 0 —sin 0;‘1‘
R.=10 cos ¢pr  sin ¢ppr cos Opp
0 —singrr oS Pgrcos Opy

rbitrary point r are expanded in a series of the orthogonal free vibration modes:

u(r.t) = kz G, (1)g(r)
=1

o0 =3 g0

fThe first six degrees of freedom are the rigid body motions: qs, - - - qs, are respectively
®r. Op. Wr. xp. v and zp. The generalized coordinates for k > 7 are the elastic modes
fof the aircraft. For the rigid body motions the mode shapes are simply

(& . &6l
lyi - vé] =[ R. 0]

[(-rx)R, I]
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The rotor equations of motion require the six components of the hub linear and"

angular motion in the shaft axis system:

- - _!f-

Xp 3
n Rsr&i(Mhup) .
Zh = A - gy) ) *
oy Rspyu(ryup) Ta. (?.‘ ‘
% -2
o B i -

hoolh_

or & = CX,. The total velocity of a point is the sum of the trim and perturbation velom- ."f',‘
ties, 0 = V + Z¢, & (in body axes). The rotor equations require the velocity components :
at the hub in an inertial frame (the S system), and the Euler angle rotations between the “§
body and inertial axes introduce perturbations of the trim velocity V. So the perturbation
velocity becomes ar x V + X, &, where 4 = wr. The contributions of ap x V to the
hub velocities (x,., v,. Z,) cancel the terms in the blade velocity due to the Euler angle n
rotation of the inertial axes relative to the trim velocity. Thus the evaluation of the hub ' sm
rotation (o, &,, %) for the aerodynamic analysis should not include the body Euler angle %
contrlbutlons Fmally the rotor hub acceleration is u = wy x V + Z g, &, where ther
first term is the inertial acceleration due to the rotation of the trim velocity vector by the
body axes angular velocity. This additional contribution of the Euler angle velocity to n

the hub linear dCCC]C[‘dllOn in the shaft axes system, is )

A(Xyis + Juis + Zxks) = @ x V = Rgp(—V x )R (rir + Orir + Wrke) M-;-I

[}

.§

which can be written Az = ¢x,.'For the second rotor the linear hub displacement must! d
be muitipliea by K,/R; to account for the differences in normalization. ¢ being based on
the parameters of the first rotor, while « is based on the parameters of the second rotor:i
this case. For a clockwise rotating rotor it is necessary to change the signs of y,, «, an
a,. In addition. the derivatives of the hub motion of the second rotor must be corrected
for the different time base, by multiplying the velocities by Q, /Q, and the acceleration. by
Q3/Q3.
Flexibility between the rotor swashplate and hub will produce a blade pitch change:#
due to elastic motion of the airframe. This coupling between the rotor pitch and mastf
bending is accounted for by introducing kinematic feedback of the following form: ;3

wl

AO o = — 3 45, (Knc, €OS Y + Kys, Sin )
iy

which is used in the expression for p, (see Ref. [2] section 2.2). i

Following the usual steps of airplane flight dynamics analysis [1], the linearized rigid”
body equations of motion are obtained by equating the angular and linear acceleratlon
to the net moments and forces on the aircraft: oo = ZM and M(uy + oF x V) = ,
In terms of the body axis degrees of freedom, including the gravitational forces, the
equations are :

RII*R.(drir + Orjr + Urkr) = (QFir + Q%ir + Q%ky)
M*(%rip + ¥rir + Zrke) — MV X)R.(rir + Orjr + Yrke)
= (QFir + Q¥ir + Q¥ke) + M*gky — G(drir + Orjr + Yrke)
where
G = —M*g[ke/0dr Okp/COF Okg/OYr] ‘

Here M is the aircraft mass. including the rotors, and I is the moment of inertia matri
These equations are dimensionless, and have been normalized by dividing by the char
teristic inertia (§ N I,),. Thus M* = M/(4NI,R?) and I* = I/(3 N I,). Note that the gra\
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D o =

Rational constant ¢ is also dimensionless. based on the acceleration Q?R: and
Bty = 72Cy/oa. where W = Mg is the gross weight. For the elastic degrees of freedom.
ince orthogonal free vibration modes are used the equations of motion are simply

‘! Mt(‘]sk + gswkqsk + (qusk) = Qt

SN k > 7. where M, is the generalized mass including the rotors. w, is the natural
iequency of the mode and g, is the structural damping coefficient. (The structural damp-
g is here represented by a viscous damping term.) The generalized forces Q¥ are due to
hc hub reactions of the two rotors, and the aerodynamic forces on the aircraft. Since the
| 'tor mass is included in the aircraft inertia, the hub linear acceleration terms should not
§e.included in the evaluation of the hub forces for these equations of motion. Similarly.
Bhe rotor gravitational forces are not included in the rotor hub forces. since the rotor
Rveight is included in the aircraft gross weight.
¥ The generalized force on the aircraft due to the rotor hub reactions is
3 |

4 Ox = &ulrnup) Frus + 21(Tnun) Myuy
N prmalizing Q, by dividing by (3 N I,) gives then

T B : T

12
(Rsr &) (Rspyi)” oa (Cy Cy Cp Cyy Cyy, — Co)

- -

23}
‘BT Q = ¢"F. with ¢ defined above for the hub motion. For rotor No. 2 it is also necessary
to account for the differences in normalization, Q and ¢ being based on rotor No. |
:aramelers while F is based on rotor No. 2 parameters. For a clockwise rotating rotor it
#i8 necessary to change the signs of Cy, Cy and Cy.

. The aircraft aecrodynamic forces considered are those acting on the wing-body. hori-
bntal tail and vertical tail. Specifically. the aerodynamic forces needed are the wing-

ghbody lift. drag and pitch moment as a function of angle of attack and the flaperon
» deﬂecnon wing-body side force. roll moment and yaw moment as a function of sideslip
'ff: ngle and aileron deflection: the horizontal tail lift and drag as a function of angle of
Rigttack and elevator deflection; and the vertical tail lift and drag as a function of angle of
Rattack and rudder deflection. These loads are defined in terms of the force or moment
 divided by dynamic pressure. The forces are multiplied by the dynamic pressure. and by
‘,t the appropriate arm for the moments: they are rotated by the angle of attack to trans-
form from wind axes to the body axes: they are rotated by the tail cant angles if
Ehecessary: and they are divided by (3 N1,). The result is the generalized forces for the
paircraft rigid body degrees of freedom, due to the aerodynamic loads. For best results.
pexperimental data should be used to define the aircraft aerodynamic characteristics.
gincluding the airframe interference effects.

e The aircraft aerodynamic forces depend on the air velocity seen by the components
'ld nd on the aircraft control positions. The air velocity consists of the trim aircraft vel-
> ocity. the perturbation linear and angular rigid body contributions. the gust velocity and
Bthe rotor-induced aerodynamic interference velocity. In body axes. the total velocity is
Ethus

3 (trip + vip + wkg) = Rpy(V + ug) iy + tgly + woky) +up + 0p x r — i

¥ which must be evaluated at the wing-body. at the horizontal tail. and at the vertical tail.
& The rate of change of angle of attack is also required (& = #/V). The aerodynamic
bk Interference velocity due to each rotor is required. With a nonuniform induced velocity
,calculation, 4 is the mean value of the velocity calculated at the position of the fixed

[ aerodynamic surface. As a simple model for the aerodynamic interference. the rotor-

A
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induced velocities at the wing-body. horizontal tail, and vertical tail can be obtained as 1
linear combination of the mean induced velocity at the two rotors: e,

s

A= K,CyA RIp(—ks) + K;C; 4 R§p( —kg) ‘

assuming that the induced velocity is normal to the disk plane. The K factors account fo
the maximum {raction of the aerodynamic surface which is affected by the wake, and {
fraction of the fully developed wake velocity that is achieved. The C multiplicative factors'®
account for the decrease in the wake induced velocity away from the wake surface, using§
the expression C = 1/max(1.1 + ). where | is the perpendicular distance from the aero-i3
dynamic surface to the nearest wake boundary (I < 0 if the surface is inside the rotor_,
wake cylinder). C is calculated from the position of the aerodynamic component relativé?
to the rotor, and the velocity of the rotor relative to the air. J.

From the velocity components at the wing-body, the angle of attack, 31des]1p angle and:§
dynamic pressure are oy = tan” 'wju, Bws = tan”'v/u. and g = $(u? + 2 + w?). The &
angles of attack of the tail surfaces are calculated in a similar manner. The aircraft:3
aerodynamic interference at the tail is accounted for by an angle of attack change € and 2
sideslip angle o, which are evaluated using procedures developed for fixed wing aircraft’ §i
[3]. The time-varying nonuniform inflow will increase the mean dynamic pressure in the Sl
wake: ‘

g = 3?4+ 2 + w?) + Jo? ‘ 25

where o2 is the mean-square wake velocity perturbation. at the wing-body or tail '
appropriate. "

The only generalized aerodynamic forces considered for the airframe elastic modes ar
the direct damping and control forces. In dimensional form, these forces are

(Qk)aero = %pvl[_

F‘lk‘ik qsk/V + Fqké' ((sf 5(’ 6(1 6r)T]~

1.3 Transmission and Engine Analysis

An elementary model is used that accounts for the coupling of the two rotors throug
the flexible drive-train. and for the engine damping and inertia. The drive train dynamicsgl
are described by the rotor speed, the interconnect shaft torsion. and the engine shaft :
torsion degrees of freedom. The equations of motion are derived from the balance of K
rotor and engine torques. A model for a governor with throttle or collective feedback o S
the rotor speed error is also considered. The engine model includes the inertia, dampm ¥
and control torques: vt

IEQE = QE - QHQE + QIHI

The engine speed is Q¢ and Qf is the torque on the engine. The engine rotary inertia'ri§¢
I¢. The engine speed damping coefficient Qg is the torque per unit speed change.a
constant throttle setting. The variable 0, is the engine throttle control position. Q, is th ‘
torque applied due to a throttle change at constant speed.

In the model considered for asymmetric drive train configurations, such as for a smgl
main and tail rotor helicopter. the two rotors are connected by a shaft and the engine
geared to one rotor. The torsional flexibility of the drive train is represented by shé
springs for each rotor, an interconnect shaft spring and an engine shaft spring. The }
transmission gear ratios are rg (the ratio of the engine speed to the speed of the fir8
rotor), and r;, and r;; (the ratio of the interconnect shaft speed to the rotor speeds). Th ,
ri/ria = €, /€, is the ratio of the trim rotational speeds of the two rotors. The degrees OGN
freedom are rotational speed perturbations of the two rotors (,; and ,,) and the engink ‘
speed perturbation .. The engine shaft azimuth perturbation is defined relative to- ="g
rotation of the first rotor, so the total engine speed perturbation with respect to space-o%
re(¥y; + ¥.). With the rotation of the two rotors coupled by the drive system, it is m
appropriate to use the following degrees of freedom: ¥, =, and y; = Y.~
(r11/ri2)¥, . Here ¢, is the differential azimuth perturbation between the two rotors.’
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L degrees of freedom y; and y, therefore involve elastic torsion in the drive train. The
B degree of freedom ), is the rotational speed perturbation of the drive system as a whole.
§. The differential equations of motion for the rotor speed dynamics arc obtained from
& equilibrium of the torques on the two rotors and the engine. The resulting equations for
¥ Y., ¥; and ¢, have linear terms due to the engine inertia and damping. the throttle
~control, and various shaft springs: and the shafl torques of the two rotors appear as
R forcing functions. These equations are applicable (with different values for the coefficients
' of the linear terms) to an asymmetric drive train configuration with the engine by either
g rotor, to a symmetric configuration with two engines, and to the case of a single rotor.
.. The governor model considered is integral and proportional feedback of the rotor speed,
- with a second order lag to represent the governor dynamics:

1,00 + 1,A0 + A8 = Kpiy, + K, ¥,

{ where A0 is the throttle perturbation. or the collective pitch perturbation of either or
i both rotors. The collective pitch perturbation is used in p, (see Ref. [2] section 2.2).

2. SOLUTION FOR THE ROTORCRAFT MOTION

It is now necessary to develop the solution procedures for the problem defined above.
The first task _is the trim analysis, in which the equations are solved for the case of a
steady state flight-condition. After the blade motion solution has been obtained. the rotor
g performance, loads and noise can be evaluated. The aeroelastic stability, flight dynamics
gnd transient analyses begin from the trim solution.

N The trim solution is the steady state condition achieved by the system as time increases
g without bound with the controls fixed and no external input. Steady state means either
f unaccelerated flight, including climbs and descents as well as level flight. or a steady turn.
® Usually it is the inverse problem that is to be solved: determining the control settings
necessary to achieve a specified flight condition. The system considered here has nonro-
§- tating and rotating components. the latter consisting of N identical. equally spaced
blades attached to a central hub. The equations of motion for such a system are not in
general time invariant. but rather have periodic coeflicients. It follows that the steady
8- state solution will also be periodic. The trim problem is concerned with the average
i values of the periodic state variables. Unaccelerated motion implies that the net force

. and moment on the entire aircraft are zero. Setting to zero the six components of the
E forces and moments provides algebraic equations that must be satisfied in the trimmed
F state. Unaccelerated flight also implies that the aircraft lincar velocity is constant and
that the angular velocity is zero (except for the Euler yaw rate in a steady turn). The
g velocity vector can be specified by its magnitude. and the pitch and yaw flight path

angles. Zero angular velocity implies that the pitch and roll Euler angles are constant

. (and the yaw angle also. except in a turn). Some of the flight path angles. Euler angles.
and aircraft controls may be specified by the definition of the trim flight state. The
§ remaining angles and controls constitute the set of trim variables to be determined in the
' solution. These variables are adjusted so that the relevant trim criteria are satisfied. The
¥ procedure is readily generalized to other cases, such as trim in a wind tunnel or specifica-
' tion of the power. The trim problem therefore naturally separates into two parts: the
§ periodic rotor motion and airframe vibration. described by differential equations: and
B the steady state flight criteria. described by algebraic equations. The trim procedure used
§ in the present analysis consists of an inner loop in which the solution for the periodic

¢ motion is obtained with fixed values of the trim variables: and an outer loop in which the
solution for the trim variables is obtained. The two parts of the problem could be dealt
with simultaneously. but by treating them separately it is possible to use procedures that
" match the individual characteristics of the two parts.

The rotor and airframe equations are solved for the periodic motion by a harmonic
analysis method. which directly calculates the harmonics of a Fourier series represen-
tation of the motion. Basically the procedure advances the rotor around the azimuth.
calculating the forcing functions in the time domain and then updating the harmonics of
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e

the response. By working in the frequency domain it is possible to use directly thé" 2
information that the solution is periodic, by assuming a Fourier series. Also the time step 3
can be kept large since the step size is determined by the frequency content of the Fourier
series representation. not by the frequency content of the system dynamics. The alterna-‘x -
tive is to solve for the motion entirely in the time domain, by numerically integrating’?' <
until the periodic motion is obtained. Such procedures generally require a small tlme-'
increment, both for accuracy and for stability of the integration algorithm. Time domam
methods also require some modification to obtain a trim solution when the system is *§
actually unstable, or even marginally stable, which is typical of rotorcraft. The frequency f§
domain method used in the present analysis was formulated so that the interharmonic - §
coupling is contained in the forcing function. The forcing function is nonlinear. so must': 4§
be evaluated in the time domain and harmonically analyzed, and the solution procedure ‘8
is necessarily iterative. Hence leaving the interharmonic coupling in the forcing function - {48
does not add any new steps to the procedure, and it minimizes the dimensions of the'":
matrix operations. The rotor motion and airframe vibration are calculated separately.
The rotor motion solution is obtained for a single blade in the rotating frame. assuming
all the blades have identical motion. All the time-varying and nonlinear terms are con-:.{§
tained in the forcing function, but the rotor blade degrees of freedom are coupled, :" 3%
particularly by inertial forces. Thus a vector equation must be solved for each harmonic i
of the motion. The airframe vibration is evaluated separately from the rotor solution. If '{{¥
the rotor and airframe motion were calculated simultaneously, the harmonics of the '¢}
rotor motion would be coupled by the action through the nonrotating frame. Such a- (¥
separate. iterative approach is possible because the coupling is generally weak (although *t3
no doubt there are exceptions). i
Several important limitations are introduced by this procedure. The assumption that ‘.
the systern and hence the trim solution are penodlc is true for a helicopter with twin, :, &
contrarotating main rotors, but not for the single main rotor and tail rotor conﬁguratlon, I
since the two rotors have different periods in the latter case. (The rotational speeds are'a. i
rational fraction when the two rotors are geared through a mechanical transmission. So-,
there is some single period for the system, but it will normally be too long to be of;
practical use.) Hence with this solution procedure it is not possible to calculate the#
vibratory dynamic or aerodynamic interaction between the main and tail rotors. Onlyg
the static or mean interaction can be accounted for. The assumption that all the blades",
are identical and have the same motion is made so that only the equations for a smgle y
blade need be solved (the system would still be periodic if these assumptions were
relaxed, although more harmonics of the airframe motion would be excited). Fmally,‘
every numerical solution procedure introduces its own stability, accuracy and conver- .
gence characteristics. ! K
For the trim problem, the solution of the equations of motion has been separated into.f ¥ A
two parts, based on the frequency content of the motion. The first part is the solution foi "
the rotor motion and the airframe vibration, which are periodic with fundamental fré-

quencies Q and NQ respectively. The second part is the solution for the steady state ,"
airframe motion. which gives the steady values of the Euler angles and control positions. .

15

e

In transient flight states. the airframe motion normally still occurs slowly relative to thej ‘
rotor rotational frequency. By assuming that the aircraft rigid body motion is quasistatic, y ’ﬁ
the same procedures developed to calculate the rotor motion and airframe vibration for ; &

the trim solution can be used as well for the analysis of the aircraft flight dynamics or %33
transient motion. One approach is to use the analysis of the periodic rotor motion forb: Y
specified mean shaft motion to calculate stability derivatives. By using prescribed pcrtur-
bations of the body motions and controls, a linear expansion of the rotor and airframe
generalized forces is obtained. Another approach is to numerically integrate the rigid
body equations of motions with quasistatic rotor motion. A non-equilibrium flight pa ‘
is produced by a prescribed control or gust input. At each time step, periodic rotofia
motion is calculated for the current shaft motion. Neither of these approaches allows the
calculation of the transient motion of the aircraft for cases in which the assumption Of_
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sasistatic airframe motion is not applicable. The solution for general transient motions

8 While the details of the solution procedure remain to be defined, an overview can be
iven at this point. The job begins with data input and initial calculations. Next the trim

fsrientation are incremented until the equilibrium of forces and moments required for the
Ripecified operating state is achieved. Since the nonuniform inflow influence coefficients

§The trim analysis is performed first for uniform inflow, then the nonuniform inflow with
ga prescribed wake. and finally for nonuniform inflow with a free wake geometry (the
analysis can stop at any of these three stages). After obtaining the trim solution, the
gircraft performance and loads can be calculated. In the transient analysis, the rigid body
ations of motion are numerically integrated for a prescribed gust or control input. In
the flight dynamics analysis, the stability derivatives are calculated and the matrices are
kdonstructed that describe the linear differential equations of motion. For each motion or
®eontrol increment in the stability derivative calculation there is an iteration between the
finfluence coefficient calculation and the calculation of the rotor motion and forces.
Finally the system of linear differential equations is analyzed (optionally including a
fumerical integration as for the transient analysis). In the flutter analysis the matrices are
fponstructed that describe the linear differential equations of motion, and the constant
scoefficient or periodic coefficient equations are analyzed. Optionally the equations are
educed to just the aircraft rigid body degrees of freedom by assuming quasistatic re-
igponse of the other degrees of freedom. and the equations are analyzed as for the flight
fdynamics task.

* The periodic rotor motion and airframe vibration are calculated for an operating state
defined by the control positions; the aircraft velocity. orientation and flight path; the
B linear and angular hub motion due to quasistatic aircraft rigid body motions; and any
b gust velocity components. The solution procedure begins with the calculation of the
blade bending and torsion modes. If nonuniform inflow is to be used. the rotor wake
finfluence coefficients are calculated, which also requires a calculation of the prescribed or
g {ree wake geometry. The outermost loop in the solution procedure is an iteration on the
g-rotor induced velocity and bound circulation. An iteration begins with an evaluation of
E-the uniform or nonuniform induced velocity from the rotor thrust or bound circulation.
The next loop is an iteration on the motion calculation, for a fixed induced velocity
b distribution. The motion calculation procedure consists of 4 number of cycles of success-
ive evaluation of the rotor and airframe motion. First the hub motion harmonics are
evaluated. Next there is an azimuth loop for the rotor. At each azimuth step the rotor
blade motion harmonics and the aerodynamic hub reactions are updated. After the rotor
-motion has been updated over a number of steps (typically one rotor revolution). the
[ total hub reactions are evaluated. and the aircraft equations are solved to update the
fharmonics of the body motion. Within the azimuth loop of the motion calculation there are
f the following steps. At a given azimuth the hub motion and blade motion are evaluated
from the current estimate of the harmonics. At each radial station the blade section pitch,
velocity, angle of attack and Mach number are evaluated: the lift. drag and moment
.coefficients are evaluated; and the section aerodynamic forces are evaluated. The genera-
lized aerodynamic forces of the blade modes are calculated by integrating the section
forces over the blade span. and then the rotor equations are solved to update the blade
b motion harmonics. After cach iteration of the motion calculation, the convergence is
tested by comparing the blade and airframe mdtion harmonics with the values at the
b beginning of the iteration. After the converged motion is obtained. the circulation con-
vergence is determined by comparing the rotor thrust or bound circulation used to
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calculate the induced velocity with the values resulting at the end of the iteration. When;
the solution has converged. it is possible to evaluate the generalized forces due to the'
mean hub reactions of the rotors; the body aerodynamic generalized forces; as well as
various performance parameters of the rotor and aircraft. :

2.1. Rotor motion and airframe vibration g

The equations of motion are solved by a harmonic analysis method. For the case of 4
steady state flight, all the rotor blades execute the same periodic motion. It follows that,.
the blade motion in the rotating frame can be written as a Fourier series: S

aC

Z ﬂ:'k) ein.p,,, 71"'

n=-w Q.
.

4 =

ac

Y W einvm
nR= -
where ,, = ¥ + mAy is the aximuth angle of the m-th blade (Ay = 2a/N, m =1 to N)
and ¢ = Qt is the dimensionless time variable. The complex representation is most:é
convenient for solving the equations of motion. The corresponding cosine and sin
harmonics are obtained from f, = (B, — if,s)/2 for n > 1. The degrees of freedom in the
nonrotating frame are the aircraft rigid body and elastic motion, and the rotor speed
perturbations. These degrees of freedom are excited by the net rotor hub reaction
obtained by summing the root forces and moments from all N blades. Ideally, the roto
hub acts as a filter, transmitting to the nonrotating frame only those harmonics a
multiples of N/rev. The vibratory motion in the nonrotating frame is then also periodic
with fundamental frequency NQ, and can be written as a Fourier series:

®
z d,g% e'PNy it

p=-wo

P =

4s, =

for the body motion, and similarly for the drive train degrees of freedom. i

The rotor gimbal motion (if present) is in the nonrotating frame, but it is most con-'1 W
venient to solve an equation in the rotatmg frame for the gimbal motion, along with th#}
other rotor blade equations. Dividing by (4 NI,) and substituting for the hub moments,
the gimbal equations of motion are

("

b -if,
1 N
N ‘; 2cos '!’m me + CGC.BGC + Ig(vée — D=0

| A Cw A
~ 5 X 2sindp L Cp + Cshos + 13(vEs — 1)Bas = 0
m=1 oa
where C,,_is the flap moment at the blade root. All harmonics of the longitudinal and !4
lateral hub moments cancel within the hub, except those at multiples of N/rev. Slmllarl
the equation for the teeter motion of a two-bladed rotor is
€

3y (=1" L Cp + CHpr + 1300

2-1pr=0.

All the even harmonics of the root flap moments cancel within the rotor hub. It can b
shown [3] that the gimbal or teeter motion can be obtained by solving the followif
equation in the rotating frame:

= Lo, + Clfg + 1502 — Ve = 0

[

for just the pN + 1 harmonics of the rigid flap motion B (except for the effects offi§
unsymmetric gimbal springs or dampers, and the fact that the damping is in the
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e nonrotating frame). Then the harmonics of the gimbal motion are

(Boclon = (Blon-1 + (B)pn+1
(Beshon = —i(Bglpn-1 + i(Be)pn+1

& or the harmonics of the teetering motion are (1), = (Bg)n. for n odd.

| In the limit of infinite control stiffness, the solution of the equation of motion for the
g blade rigid pitch degree of freedom reduces to p, = p,” The total root pitch motion py is
v written as the sum of p, and the motion due to elastic distortion of the control system:
¢ Do = p, + pa. Substituting for po, the rotor equations of motion will be solved for the
- harmonics of p,. The case of infinite control system stiffness then requires only that the
8. equations for p; be dropped from the solution procedure. Writing po = p, + p4 intro-
. duces terms due to p,. p, and p, in the equations of motion.

A harmonic analysis method is used to integrate the differential equations of motion,
§ solving directly for the harmonics of the motion. Consider equations of the form

MB+KB=gp gy

‘ where § is the degree of freedom vector, K and M are the appropriate stiffness and mass
k- matrices. and g is the forcing function (usually nonlinear). It is assumed that K and M
jare time-invariant. To avoid the singularity of the resonant response at harmonics near
éthe natural {requency, it is necessary to include the damping terms of the left-hand-side of
8 this equation. Thus the term Cf is added to both sides, giving

MB+CB+KB=g+CB=F

;Where C is a constant damping matrix. For good convergence the damping coefficient
“used should be close to the actual damping of the particular degree of freedom, including
L structural. mechanical, and aerodynamic damping sources. The damping estimate does
- not have to be exact however. since it is added to both sides of the equation. In fact the
¥ actual damping in the forcing function g will often be time varying and even nonlinear,
B so the viscous damping coefficient has to be an approximation. Now the function F is
B evaluated at J points around the rotor aximuth: Fj=F(y;). where y; = jAy (j =1to J
f- and Ay = 2n/J). Then the harmonics of a complex Fourier series representation of F are

J
Fo== Y Fe ™K,

With K, = 1 these harmonics would give a Fourier interpolation representation of F(y).
¥ While it matches the function exactly at the known points F(y;) (or with least squared-
error if the number of harmonics used is less than (J — 1)/2), the Fourier interpolation
gives a poor representation elsewhere. with large excursions due to the higher harmonics.
fIn particular, poor estimates of the derivatives of the function F are obtained. With the
3: above values for K, (which reduce the magnitude of the higher harmonics) and an infinite
¥ number of harmonics, a linear interpolation between the known points F(y;) is obtained.
F By truncating the Fourier series (n = — L to L) the respresentation of F is smoothed. the
[ corners of the linear interpolation being rounded off. Usually L = J/3 is satisfactory. so
"the number of azimuth stations should be about three times the maximum harmonic of
k interest. Then the solution of the equation of motion for the harmonics of f is obtained
from the harmonics of F by B, = H, 'F,. where H, = K — Mn? 4+ Cin. (It is necessary
P to multiply C by K, when evaluating H,. to be consistent with the Fourier analysis of C
¥ in the forcing function F.) The iterative solution. required because the nonlinear forcing
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function F depends on B and B. proceeds as follows. At a given azimuth ;. the blade
motion is calculated using the current estimates of the harmonics. The forcing function
F; is evaluated next. The estimates of the motion harmonics are then updated to account
for the difference between the current value of F; and that found in the last revolution:

1 )
Aﬂn = Hn—l[FJ - (Fj)lasl rcv] 7 Kne""dl)‘

After adding Afl, to the harmonics §,. the azimuth angle is incremented to ;.. This
procedure thus provides an update to the motion at ;,, from the revised calculation
of the forcing function at ;. based on the assumption that the solution is periodic:

: ' 1 .
Aﬁj+1 — ZAﬁn e:n(&j+;\w] — [} ZH"—lK" eanw:l AF}

The calculation proceeds around the azimuth in this fashion until the solution converges.
The test for convergence is performed typically once each revolution. Requiring that the
root-mean-squared change in the blade motion from one revolution to the next be below
a specified tolerance. the criterion is (AB),.s < € for all degrees of freedom. where here AS
is the difference between the motion at the current and the previous revolutions. ).

To begin the solution at a new azimuth station, the deflection, velocity. and acceler- _&
ation of each degree of freedom are evaluated from the harmonics. So for the rotor blade
bending. qi. g« and g, are evaluated at  from the harmonics f{; the pitch/torsion and -§
gimbal/teeter motion are also evaluated as required. For the second rotor these time ¥
derivatives are based on Q,. The rigid body and elastic airframe motion of the aircraft is §
evaluated from the harmonics ¢ (for n a multiple of N). In addition. the steady state or ‘§
slowly varying rigid body motion contributes static velocity terms (g, )y.ic for K < 6; and
the static elastic airframe gives (¢, )gaic for kK = 7. The rotor hub motion is then

, T _ .
a = (X, Y2y, 0,) = clgs,) = X,

where ¢ is defined in section 1.2. Recall that in the evaluation of a,, a, and «, (for the
aerodynamic analysis) the contributions of the rigid body Euler angles are not included; 3
also. the linear hub displacements are not used in the rotor analysis. Hence « is evaluated 'j
due to the elastic airframe modes only (k = 7). The corresponding velocity and acceler- '§

ation of the hub are & = ¢x, and & = ¢X; + ¢X,. For the second rotor, @ and & are ‘
multiplied by Q,/Q, and (Q,/Q,)* respectively. Also for the second rotor, the aircraft ‘g
motion harmonics are at n = pNQ,/Q, (relative to the time scale of the nonrotating 33
frame, which is based on Q;). The net result is that by evaluating the hub motion as a -}
sum of harmonics at n = pN, with the azimuth angle of the second rotor, the time scale |
will be automatically accounted for [3]. except that a factor of Q,/Q, is still required in %
the second term of %, to account for the scaling of the aircraft velocity in ¢é. The acceler-
ation due to gravity is also included in 4, as an equivalent linear acceleration (with a
factor (Q2R), /(Q*R), for the second rotor). Hence the harmonics of the rotor hub motion X
are obtained from the harmonics of the aircraft degrees of freedom by the following -
expressions:

o = c($)

&, = inc(¥)

%, = —n2cl@) + iné(dp)
for n a nonzero multiple of N; and the static components are

Xsiatic — C(QSk)smlic
dsmlic = 6(‘.]31‘ )stalic

—gRsrk£>

islalic = E(i]s,‘)smic + ( 0
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B Factors accounting for the normalization of the second rotor are included as required;
B .nd it may also be necessary to account for an azimuthal phase difference between the
B two rotors. The harmonics of che drive train motion are obtained by a similar procedure.
Bb The harmonics of the blade pitch increments due to the governor and the rotor mast

¢ bending, required for p,. are obtained from the harmonics of the drive train and airframe

“'degrees of freedom respectively.

The differential equations of motion for the rotor degrees of freedom take the follow-

B ing form for the n-th harmonic

S B O OO )T = F

* where 0 is the n-th harmonic of pqs and fg, is only present for the n = pN + 1 harmo-

E. nics for gimballed or teetering rotors. The matrix H, is calculated from the mass. spring.
and damping matrices discussed in Ref. [2] section 2.2. plus an estimate of the aerody-
& ‘namic damping and spring forces (some terms in H, depend on the mean bending
" deflection therefore, and must be updated as the solution proceeds). The forcing function
B~ F is evaluated in the time domain. It consists (as discussed in Ref. [2] section 2.2) of the

a4

E aerodynamic forces (minus the corresponding estimate of the aerodynamic forces in-

cluded in H,); the inertial forces due to the hub, drive train, and control motion (p, terms,

& cach azimuth step ;. the forcing function F; is evaluated, and then the blade motion
g~ harmonics are updated as described above.

The generalized aircraft forces due to the rotor hub reactions are Q = ¢”F, where here

) 2
F1 = ;7;((‘” Cy CT CM,\ CM,, —CQ)

}. The rotor hub reactions are obtained by summing the blade root reactions over all the
B. blades, as discussed in Ref. [2] section 2.2. The root reactions contain inertial terms due
F¥ (0 the blade bending and gimbal motion and the shaft angular motion: and aerodynamic
£ terms. The operation of summing over all N blades is equivalent to filtering out all

'frequencies except multiples of N/rev This may be accomplished directly in the inertial

aerodynamlc terms, an equivalent approach is to omit the summation operator and only

i evaluate those harmonics at multiples of N/rev.

The differential equations of motion for the aircraft degrees of freedom take the follow-

% ing form for the n-th harmonic: H,(¢) = Q,. where here the forcing function is due to

. the two rotors (Q = ¢TF) and the transfer function matrix (from section 1.2) is

—RTI*R.n? 0 0
H,= | —=M*Vx)R,in+ G —M*n* 0
0 0 Hp,

f. with H,. a diagonal matrix for the aircraft elastic motion:

l/
Hne = [_Mtnz + (Mk‘gswk + O'YT/? F‘h‘lu)“’ + M’?wf]

k' The hub reactions are evaluated at azimuth stations ¢; as the rotor equations are being
. solved. Then the airframe vibratory motion is obtained from

J
(o8 = H '"F, = H'eT S FJ%K,,L'"""’”
j=1

for n a nonzero multiple of N. The aircraft response to each of the two rotors is evaluated
separately. The time scale of the aircraft equations is the rotational speed of the first
rotor. so the harmonics of the motion due to the second rotor are at multiples of
- n = (Q,/Q,)N,. It may be necessary to account for an azimuthal phase difference
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Fig. 1. Outline of dynamic interaction of the two rotors. 2 “24

between the two rotors. Similarly the equations of motion for the drive train are solved K
for the harmonics of the rotor and engine speed perturbations and the governor degrees
of freedom, as excited by the rotor torques. The corresponding equations for n = 0 are :
solved for the static elastic airframe and drive train deflection due to the mean rotor hub T
reactions. iy
In the present model, the two rotors of a helicopter can influence each other through &
excitation of vibratory airframe motion (Fig. 1). The hub reactions are calculated for each - #
of the two rotors. From these hub reactions, the aircraft equations of motion are solved: -
for the harmonics of the airframe rigid body and elastic motion. Then the hub motion ; T,r
can be evaluated at each rotor. due to the forces of each rotor. The motion at each hub ‘j
due to the two rotors is summed. Then the rotor equations are solved for the rotor
motion and for the hub reactions again. It is useful to be able to suppress the feedback of
the nonrotating frame vibration to either or both rotors. The cross coupling can be: } ‘4
suppressed by omitting the summation of the two hub motion components at one or: r-
both hubs (the dotted line in Fig. 1). The entire vibratory hub motion can be decoupled *
from the rotor by setting it to zero at one or both hubs (the static or low frequency hub :
motion and the acceleration due to gravity should be retained however). Decoupling the 1§
vibratory hub motion is equivalent to dropping the aircraft degrees of freedom as far as -.
the rotor analysis is concerned, but it still may be useful to evaluate the aircraft vibration 3.
due to the hub reactions. The solution procedure described here is based on the assump-,=< {
tion that the entire system is periodic, which in fact is true only if both rotors have the.r
same rotational speed. When the two rotors do not turn at the same speed, the motion in }e!4
the nonrotating frame is not periodic even in steady flight. In order to analyze a penodlc’
system still, it is necessary to neglect the mutual interference of the two rotors. The;
analysis proceeds as described above, except that the hub motion of one rotor due to the. .
vibratory airframe motion produced by the other rotor is always suppressed. Effectively4s
the helicopter is then being analyzed as two single rotor systems. except for the coupling*}
through the aircraft steady state motion. .
The blade motion is calculated for a given induced velocity distribution over the rotors
disk. When the converged solution for the motion is obtained, the rotor loading (thrust*“ “
or bound circulation) is re-evaluated. Then the induced velocity estimate can be updated,- };
and the motion solution repeated. The procedure continues until the root-mean- -squared 33
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J
% S (A < (€2no/N)?
i=1

vl

-T ¥where I'; is the maximum bound circulation and the summation is over the azimuth.

When uniform inflow is used, the criterion is
4 (ACr)? + 8(ACE, + ACE) < (o)

1
N

%*To improve the convergence, a lag is introduced in the thrust coefficient used to
,.calculate A

.
el

Cr=/Cr,,,

where Cr,, is the thrust used to calculate 4; in the last iteration. and Cy__ is the thrust
calculated using the value of 4;. Ideally, the factor f should have a value equal to the

ust lift deficiency function [3]
MR
4 aT

.
.

e section 3.1). but an even smaller value may be necessary for good numerical behav-
Similarly. for a nonuniform inflow calculation a lag is introduced in the blade bound
culation used to evaluate the induced velocity. A difficulty with the circulation itera-
on occurs for a hovering rotor at zero blade pitch, for which the lift deficiency function
= 0. In this case, the solution converges to an oscillation between Cr =4 and
RCr = — 0, where & approaches zero as f approaches zero. For f = 0 there would be no
Biteration at all however. Hence the solution Cy = 0 cannot be reached exactly, but can
Be approached as closely as desired, at the cost of many iterations (for small f). A better
Mhrocedure for this case is to choose f'so that the exact solution is achieved on the second
teratlon (the required value of f depends on the initial conditions). It would even be
Epossible to use f rather than collective pitch as the variable in the trim iteration to
,] Kchieve Cr = 0.
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‘;2 Rotor performance, loads and noise

"’ Once the solution for the periodic motion of the helicopter has been obtained. the
gerformance. loads and noise of the rotor can be evaluated. The rotor loads of interest
Biclude the tension and shear forces, bending moments and torsion moment at various
lade radial stations; the control loads; the blade root forces and moments; and the net
i_tor hub reactions. The rotor-induced vibration can be evaluated from the airframe
Mscillatory motion. in terms of the inertial acceleration at various points in the aircraft.
B¥rom the rotor aerodynamic loading and thickness the rotational noise can be calculated
Rising one of the existing rotor acoustic theories.

The rotor performance is described primarily by the mean hub reactions, particularly
he thrust. propulsive force, and torque. The hub reactions can be evaluated in shaft axes.
Bip-path plane axes and wind axes. It is conventional to split the rotor power according
o the type of energy loss: induced, interference. profile, parasite. or climb power. Various
berformance indices of the rotor can be evaluated. including the figure of merit (ratio of
ldeal power loss to actual power) and rotor lift-to-drag ratio.

b The rotor loads at radial station r are calculated by integrating the aerodynamic and
Rnertial forces acting on the blade outboard of r. The root loads are calculated by
integrating the forces over the entire blade. This approach is consistent with the modal
ireally Galerkin) derivation of the blade equations of motion used in the present analysis;
Bnd it is efficient. requiring few blade modes. The total tension and shear forces acting on
;.lh blade section at r, in coefficient form, are

%(c,‘\ig + Cpjg + Cy Kg).
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The bending moment acting on the blade section at r is

M

l_bﬁ=_(c

od

N'bcnd = Cm:kB)

These section loads are obtained in the blade principal axes by a coordinate rotation,
The forces and moment at the blade root (F,,,, and M,,,,) are defined in a similar fashion. £§
The torsion moment on the blade section at r is M, = M J[,Q%) = (;/60)Cp,. The"
control load is obtained from the moment about the pitch axis at the blade root; 3

M. on = Mg /(1,9%) = (y/6a)C,,,. The definition of the force and moment coefficients is §
G F F :
¢ p(QR)Rc,,  pQR)?Ac/N

C, = M F
o pQR)*R%*, pQR)’RAc/N

where ¢, is the blade mean chord. ¢ = N¢,,/nR the rotor solidity. and A4 the rotor disk : ;
area. All of these loads have aerodynamic and inertial terms. for example g
= (y/uc)F 4 — Fy/l,

nhear

where

1
F, = f amdp
T

1
FA = f (inB + Fer + szB)dp

deﬁned in Ref. [2] section 2.2. The pitch axis momem Mg, and the root reactions are
also defined in Ref. [2] section 22 The mertm terms are evaluated by a procedure

terms of the degrees of freedom is substituted, and the integrals of the inertial properticsz' i
over the span are evaluated. Hence the inertial terms are expressed as linear functions of ;g

total force and moment acting on the rotor hub are obtained from the root forces ang
moments by resolving the rotating reactions into the nonrotating frame and summing
over all N blades, as described in Ref. [2] section 2.2. Here it is not just the mean hub
reactions that are required. but the vibratory components as well.

2.3 Steady state or slowly varying aircraft motion

The equations of motion for the aircraft rigid body degrees of freedom are

J*(d.;FiF + ﬁFjF + l'I}ka') = Qmomcnl
M*(V X )Rudrir + Opir + Wrky)

M*(Xpir + Vijr + Zrkg) — :
b
= Ql'orce + A/I‘ng - G(¢Fir + Gpj[: + kaF)‘ A

The rotor mass is included in the aircraft gross weight and moments of inertia: th
matrix J also mc]udes conmbuuons from the rotor rotdtlonal moment of mertm No
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@aerodynamic loads. These equations are the basis for the trim, transient and flight dy-
jamics analysis.

: In the trim analysis, the equations are solved for the case of steady state flight. The
fight condition is defined by the aircraft speed and flight path angles. The helicopter can
so be trimmed in a steady turn by prescribing the yaw rate yr. It is assumed that the
g Totor rotational speed is constant. For steady flight the perturbation rigid body motion is
~zcro so the equations of motion simply state that the net force and moment on the
alrcraft are zero (except possibly for the inertial term due to the turn rate):

(Q momem) = 0

Cw +ICW

kE (V X )R kFWF + 5= 2 (Qforce =0

'_'hese six algebraic equations are to be solved for the trim variables required to achieve
e specified operating condition. The six trim variables in this case are the four pilot’s
controls and the two aircraft Euler angles. The individual rotor and aircraft control
%= positions are obtained from v = Tevp + vo. Additional or alternative trim constraints
pand corresponding trim variables are readily formulated. For example, in free flight the
Eflight path angle can be adjusted for a specified power available, rather than prescribing
Pithe climb or descent rate. In a wind tunnel case, typically the rotor itself is trimmed to a
- 'pecxﬁed operating condition. For example, the rotor thrust or power can be trimmed
pwith collective pitch; and the rotor tip-path plane tilt can be trimmed with lateral and
ongltudmal cyclic pitch control. The trim iteration can also be omitted, in which case
@ighe helicopter or rotor performance is evaluated for a specified control setting.
§=: The trim problem is solved in the present analysis using a modified Newton—-Raphson
‘ chnique. The task is to find the values of the trim variables v such that the target values
QD certain trim criteria M are achieved. The complex, nonlinear form of the equations
M (v) requires an iterative solution procedure. The first-order Taylor expansion of M
B “ves
oM

:; Mlargel = Mn+1 = Mn + —a—_
) ‘;' ]

(vn+l - vn)

Va+1 =V, + D—I(Mmrgel - Mn)f

tfor the n-th iteration. With f = 1 this is the Newton-Raphson method. The factor f < 1 is
Fintroduced to improve the convergence. By reducing the trim variable increment the
Eovershoot oscillations frequently encountered in the Newton-Raphson technique can be
nimized. There are other techniques for solving such nonlinear algebraic equation,
4 lthough few have been used in helicopter analyses. Some of these other techniques
psimply give an automatic procedure for evaluating f as the iteration proceeds. The matrix
ED is calculated by making finite increments in the trim variables v; around some initial

yalueofv.
oM
D= = [

M(v;) — M(v; — Av)
o

B The partial derivative matrix may be recalculated occasionally as the iteration proceeds
fto improve convergence. The criterion for convergence in the free flight cases is that the
¥het force and moment be less than a certain tolerance level as specified by the parameter
€. Crlo < eCyfo and Cyfo < €(0.05 Cy /o). Similar criteria are used for the other trim
E options.

y In the transient analysis, the helicopter rigid body equations of motion are numerically
integrated in time. A non-equilibrium flight path is produced by a prescribed control or

VERT. 5/) —8




202 WAYNE JOHNSON
gust input. In the present analysis it is assumed that the aircraft motion is slow compared '3
to the rotor speed, which allows the periodic rotor motion solution to be used with the 3§
transient analysis. It is also assumed that the perturbed rigid body motion is small, 3§
because in the rotor analysis it was assumed that the hub motion is small. It is consistent “§
therefore to integrate the linearized equations for the rigid body motion. Subtracting the 2
trim terms, the equations to be integrated are ' iB

J*((iFiF + gl"jf + lkaF) = AQmomenl
AQqoree + M*(V xR, (Brir + Orjr + AYekp)
— G(9rir + Orjr + Yrky)

M*(Xpip + Vrir + Zrkf) =

produce spurious transient motions. The initial conditions are zero motion (except for ' 2
when the helicopter is trimmed in a turn). Any of these degrees of freedom can be held 3§
constant: if all six are constrained, the analysis produces the quasistatic rotor response to 3
the control and gust inputs. With the input quantities defined as a function of time, the 4
equations take the form y = f(r, y. y), which is to be integrated for t > 0. A fourth-order; v
Runge-Kutta method is used to perform the numerical integration [3]. -
In the flight dynamics analysis the helicopter stability derivatives are calculated, and §
the resulting linear differential equations are analyzed. The use of stability derivatives’
implies again that the body motion is slow compared to the rotor rotational speed, so the 48

motion is small is also consistent with the stability derivative representation. The equa--4§
tions of motion are used in the same form as for the transient analysis. Here a linear:$

tational terms, the result is a set of time-invariant lmear differential equations of the form : ;7‘-
Azi + Alx + on = Bv + Bpr + BGg

describing the flight dynamics of the aircraft. The state vector x consists of the six rigid.-¥
body degrees of freedom; v is the vector of the individual rotor and airframe controls; v, %
is the vector of the pilot's controls; and g is the vector of gust velocity componernts. §
Using these equations the helicopter flying qualities can be examined, in terms of thé ‘88
eigenvalues and eigenvectors. The transfer function (pole-zero set or frequency response}é
or the transient response to a prescribed control or gust input can also be obtained.

3. AEROELASTIC STABILITY

The objective of the aeroelastic analysis is to derive a set of linear differential equation
describing the perturbed motion of the helicopter from the trim flight condition. The,
stability of the system is defined by the eigenvalues of these equations. To construct th
equations 1t is necessary to derive a perturbation form of the rotor and airframe mod
described in the previous sections, by linearizing the aerodynamic and inertial force
about the trim solution. For the most general case, the linear differential equationg}
describing the helicopter motion have periodic coefficients, and must be analyzed by thc
methods of Floquet-Liapunov theory. With axial flow aerodynamics (and usually other}
restrictions if the rotor has two blades) the equatxons have constant coefﬁcnents and the ‘
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: "‘d moderate advance ratios, it is often possible to describe the helicopter dynamics by a
of constant coeflicient differential equations that represent an adequate approxi-

33

31 Rotor model

The rotor blude motion is described by coupled flap-lag bending. rigid pitch and
BBlastic torsion, and optionally the gimbal or teeter motion. The blade degrees of freedom

re written as the sum of trim terms and perturbation terms. The perturbation motions
 the degrees of freedom for the aeroelastic analysis. In particular, the generalized
ordinate of the i-th blade bending mode is written 4i = Gipm + dyq;. After substituting
' g;. the delta notation indicating the perturbed motion is omitted.

The rotor equations of motion have been obtained in the rotating frame, with degrees

i8 behawor Such a represematlon of the rotor motion simplifies both the analysis and

e understdndlng of the behavior. The appropriate transformation to the nonrotating

me is of the Fourier type [4]. The Fourier coordinate transformation has been widely
ed in the classical literature, although often with only a heuristic basis. More recently,
fiere have been applications of the transformation with a sounder mathematical basis.
gonsider a rotor with N blades equally spaced around the azimuth. at y,, = ¥ + mAy
where Ay = 2n/N and the blade index m ranges from 1 to N). Here ¢ = Qt is the

mensmnless time variable. Let ¢"™ be the degree of freedom in the rotating frame for

e m-th blade. The Fourier coordinate transformation is a linear transform of the

B¥Ecrees of freedom to the nonrotating frame, introducing the following new variables:

1 N
= — (m)
ﬂo N Z q
N
S q"™ cos ny,,

q"™ sin ny,,

(m) ﬂO + Z(Bﬂf cos "l/’m + ﬂns sin nwm) + BN/Z('— 1)

jhich gives the motion of the individual blades again. The summation over n goes from 1

— 1)/2 for N odd. and from 1 to — 2)/2 for N even. The fy,, degree of

B eedom appears in the transformation only 1f N is even. The corresponding transforma-

Hlons for the velocity and acceleration follow directly [3]. The Coordinate transform must

B¢ accompanied by a conversion of the equations of motion from the rotating

P the nonrotating frame, which is accomplished by operating on the equations as follows:

J

“

1 2 , I .
NZ(...), N;{...)cosmpm. —%L..)snnntpm. N%(”')(_“ )

Z

m
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Note that these are the same operations as are involved in transforming the degrees off
freedom. Since the operators are linear, constants may be factored out. Thus with cong
stant coefficients in the equations of motion, the operators act only on the degrees ¢f§
freedom. By making use of the definition of the degrees of freedom in the nonrotating
frame, and the corresponding results for the time derivatives. the conversion of th

equations is then straight-forward. Complexities arise when it is necessary to conside

periodic coefficients. such as due to the aerodynamics of the rotor in nonaxial flow. Thi}

expressions for the total force and moment on the hub in the nonrotating frame involv
operators exactly of the form above. acting on the root reactions of the individual blad
in the rotating frame.

For the present analysis. the degrees of freedom to be transformed to the nonrotatl ;
frame are blade bending. blade pitch and the gimbal motion. The collective and cych
modes are particularly important because of their fundamental role in the coupleg

motion of the rotor and the nonrotating components. When the transformation of th,‘

equations is accomplished. for axial flow there is a complete decoupling of the variabl
into the following sets: (a) the collective and cyclic (0, l¢. 1s) rotor degrees of freedo
together with the gimbal tilt and rotor speed degrees of freedom and the rotor sh
motion: and (b) the 2¢. 2s. .. .. nc. ns and N/2 rotor degrees of freedom (as present). Thuy
the rotor motion in the first set is coupled with the fixed system. while the second s
consists of purely internal rotor motion. Nonaxial flow couples. to some extent. all theg
rotor degrees of freedom and the fixed system variables, primarily due to the aerody g
namic terms: still the above separation of the degrees of freedom remains a domma
feature of the rotor dynamics behavior.

4
*q
5

The equations of motion for the rotor degrees of freedom and the expressions for thj -

hub reactions are given in Ref. [2] section 2.2. The form of the inertial forces is a lineg

dependence on the rotor and shaft motion. with the coefficients depending on the meaf

bending deflection. Hence the inertial terms can be directly linearized. The aerodyna u;fi
forces are defined in Ref. [2] section 2.4 in terms of integrals of the section forces over .rff
blade span. A linearized form of the aerodynamic forces is obtained as follows: thd

velocity and blade pitch are written as a trim term plus a perturbation term: the angle ¢ _':
attack and Mach number perturbations are defined in terms of the velocity perturbéd

tions; and the derivatives of the section aerodynamic coefficients with respect to angle ¢

attack and Mach number are evaluated (by making finite increments in x and M). Henck '}
the section loading is expressed in terms of the perturbation of the pitch and velo 'n;,;;

components. The velocity components, as discussed in Ref. [2] section 2.4, are lineat}
functions of the rotor degrees of freedom. shaft motion. and gust velocity, with thél

inflow model (described below). Combining the expansion for the section loads in term
of the velocity perturbations. and the velocity in terms of the motion of the rotor, th
linearized form of the integrated aerodynamic forces is obtained. The aerodynamic coefli
cients are constant in axial flow, but for nonaxial flow they are periodic functions of ¥/,

The aerodynamic forces on the rotor result in wake-induced inflow velocities at thi

disk. for both the trim and transient loadings. The wake-induced velocity perturbationi

can be a significant factor in the rotor aeroelastic behavior: an extreme case is th

influence of the shed wake on rotor blade flutter. The rotor inflow dynamics sho ?.:‘-f; ‘
therefore be included in the aeroelastic analysis. However. the relationship between tH#

inflow perturbations and the transient loading is likely more complex even than for tHgi
steady problem. and models for the inflow dynamics are still under development. In tHESE

"
*

present analysis, an elementary representation of the inflow dynamics is used. The basig
assumption is that the rotor total forces vary slowly enough (compared to the wakii

o>

response) that the classical actuator disk results are applicable to the perturbation as will
as the trim velocities. A contribution to the velocity normal to the rotor disk of tH

relates these inflow components to the transient aerodynamic forces on the rotor. and

1 .

coefficients depending on the rotor mean velocity and the blade azimuth angle. A pertufsil
bation induced velocity is included in the normal velocity up, for use with a dynamii§

oS

T

following form is included: 84 = 4, + A.r cosy,, + 4, siny,,. The inflow dynamics modéi

the transier
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Etand momentum theory results give expressions for /6T and 04/éM [3]. Here the A,
ffand 4, perturbations due to the thrust have been included. consistent with the trim
ginflow model (Ref. [3] section 2.4 gives expressions for the constants k, and x,). These
gelations for the inflow perturbations imply the following lift deficiency functions [4]:

(1 + oa/8u)~"!
(1 + ga/84)~"!
(1 + oa/16})~"!

forward flight
moments in hover
thrust in hover

C

time lag in the inflow response to loading changes has been included, defined by the
e constants 7, and 1, [3]. The effect of the ground on the inflow dynamics is to add a
rturbation due to changes in the rotor height above the ground: é. = (04/dz)é:z. where
2z can be evaluated using the expression for the induced velocity in ground effect from
e trim inflow model. A decrease in the rotor height above the ground produces a
ease in the induced velocity. hence a rotor thrust increase that acts as a spring
Wgainst the vertical height change. Finally, the rotor-rotor interference is included in the
Mhflow dynamics, using the same interference factors «,, and x,, as for the trim induced
Welocity model.
The linear differential equations for the rotor motion and hub reactions can be con-
ructed at this point. The Fourier coordinate transformation is applied to the bending
nd torsion degrees of freedom of the blade, so the equations are in the nonrotating
ame. The introduction of the Fourier coordinate transformation. and evaluating the
:ub forces from the blade root reactions. produces a summation over all N blades of the
Botor. For the case of a rotor operating in axial flow, the coefficients of the blade forces in
M he rotating frame are constants. independent of the blade azimuth angle. The coefficients
fare also then entirely independent of the blade index. so the summation over the blades
perates only on the system degrees of freedom, not on the coefficients themselves (which
actor out of the summation). As a result. the coefficient matrices of the equations in the
onrotatmg frame are constants for a rotor in axial flow (and with three or more blades).
EWhen the rotor is operating in nonaxial flow, the aerodynamic coefficients of the rotating
gblade forces are periodic functions of ¢, because of the periodically varying aerody-
fnamics of the edgewise moving rotor. It follows that the rotor in nonaxial flight is
fescribed by a system of differential equations with periodic coefficients. It is possible to
BExpress the aerodynamic coefficients of the rotating blade forces as Fourier series. and
gthen to obtain the coefficients of the nonrotating equations in terms of these harmonics.
4 owever. the simplest approach for numerical work with large-order systems is to leave
he coeflicients of the nonrotating equations in terms of the summation over the N blades
f the rotor. The summation is easily performed numerically, and it is found that this
; fform is also appropriate for a constant coefficient approximation to the system. Rotors
Bwith three or more blades may be analyzed within the same general framework. but the
¢wo-bladed rotor is a special case. The rotor with N > 3 has axi-symmetric inertial and
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structural properties and hence the nonrotating frame equations have constant coeffi:§
cients in axial flow. In contrast. the lack of axi-symmetry with two blades leads toj
periodic coefficient differential equations, even in the inertial terms and in axial ﬂow,
Only in special cases are the dynamics of a two-bladed rotor described by constan
coefficient equations. },
A constant coefficient approximation for the rotor dynamics in nonaxial flow is desire}
able (if it is demonstrated to be accurate enough). because the calculation required .E,
analyze the dynamic behavior is reduced considerably compared to that for the periodi@}
coefficient equations. and because the powerful techniques for analyzing lime-invarian’ ‘
linear difierential equations are then applicable. However, such a model is only ang
approximation to the correct aeroelastic behavior. The accuracy of the approximatiof§ie
must be determined by comparison with the correct periodic coefficient solutions. Thii
constant coefficient approximation derived here uses the mean values of the periodidfl
coefficients of the equations in the nonrotating frame. To find the mean value of theé3
coefficients, the operator :

l 2n 1
2—7;[ (.)dy

is applied to the coefficient matrices. which involve the summation over all the blades". 5
It is found [3] that the constant coefficient approximation is obtained from the penodl 3

coefficient expressions by the simple transformation

N J -
& 2 MW =3 T IMW)
m=1 i=1 R
The summation over N blades (¥, = ¥ + mAy. Ay = 2r/N) for a periodic coefficient ik$
replaced by a summation over the rotor azimuth (y; = jAy, Ay = 2rn/J) for the constant;
coefficient approximation. This is quite convenient since the same numerical procedurég
may be used to evaluate the coefficients for the two cases. with simply a change in ;f
azimuth increment. The periodic coefficients must be evaluated throughout the period .
while the constant coefficient approxlmatlon (mean values only) is evaluated only once. 4
The constant coefficient approximation is not as useful or as accurate for a two-bladei .5
rotor as for N > 3. With three or more blades. the source of the periodic coefficients 1s‘
nonaxial flow, hence the periodicity is of the order of the advance ratio. At low advané "
ratio then (less than about 0.5), the constant coefficient approximation may be expectedy
to be a good representation of the correct dynamics. The two-bladed rotor has in ad-
dition periodic coefficients due to the inherent lack of axi-symmetry of the rotor.
periodicity is large even for axial flow, and neglecting it in the constant coefficientt$
approximation may be a poor representation of the dynamics. In particular, it is noti )‘
possible to use the approximation as formulated here for the flight dynamics analysis of
two-bladed rotor helicopter, since this averaging eliminates the coupling between théx
rotor and the shaft motion. “"f

3.2 Aircraft model e

The aircraft motion is described by the rigid body and elastic airframe degrees of
freedom. as defined in section 1.2. The aircraft controls consist of flaperon, elevatorz @
aileron and rudder deflections. The rotor hub motion is obtained from 2 = ¢x,. where
is defined in section 1.2. In addition there is a linear acceleration due to the rotation @
the velocity vector in body axes by the Euler angular velocities, written Aa = ¢x;.

The equations of motion for the aircraft rigid body and elastic degrees of freedom ar
given in section 1.2. The generalized forces due to the rotor hub reactions are Q = ¢”E
The generalized forces due to the aircraft aerodynamics are linearized by making success#g
ive, finite perturbations of the variables (as for the calculation of the stability derivatives)ZR
A perturbation form of the model described in section 1.2 for the rotor induced interfergi
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:onstant coeff;. K
slades leads 1

l'in axial flow, kit
:d by constan B

ence velocities at the wing and tail is also included. The drive train degrees of freedom
¥ are defined. and the linearized equations of motion are discussed, in section 1.3.

3.3 Coupled rotor and aircraft

i flow is desir. B
on required to §f
or the periodic Jf-.
time-invariant B;¥
lel is only an Et:
approximation
solutions. The
f the periodic
1 value of the

Azia + Al’.‘R + AoXR + /?21 + /Ild + 201 = BVR + B(;gs
F = CZiR + CI*R + CoxR + éza + C:la + 601 + DGg,

1% of freedom used for the inflow dynamics model are A,, A, and A,, defined by 41 = 4 (so
' f,_that the highest derivatives are second order). The rotor control vector vz consists of the
8ir blade pitch control. The gust vector in shaft axes is related to the gust vector in velocity
;C' axes by g, = Rgg. The vector F consists of the six components of the hub forces and
‘moments, in the nonrotating frame. The vector a consists of the six components of the
- linear and angular shaft motion. The hub motion is related to the aircraft degrees of
freedom by a = ¢x,. & = ¢X; and & = cX, + €X,. For rotor No. 2 it is necessary to
:change the time scale to the rotational speed of rotor No. 1: so the matrices with

bscript 1 are multiplied by (Q,/Q,): and the matrices with subscript 2 are multiplied by

{(£,/Q,)%. The aircraft equations of motion take the form

all the blades.
n the periodic

arXs + ay X, + agX; = by, + bgg + bi(A,y (Q,/Q)A,)7 + i Fry + chaFra

The vector x, consists of the aircraft rigid body and elastic airframe degrees of freedom:
fdy, consists of the aircraft controls: and g is the gust velocity. in wind axes.

;. The equations for the rotor and aircraft can now be combined to construct the set of
i ‘_inear differential equations that describes the dynamics of the complete system. These
jiequations take the following form:

> coefficient is
" the constant
cal procedure
change in the
it the period.
:d only once.
a two-bladed
coefficients is
low advance HE
' be expected | k: The coupled equations of motion are obtained by substituting the hub motion into the
r has in ad-

g rotor. This
1t coeflicient
lar, it is not
analysis of a
between the

Azi + Alx + on = By + Bpr + BGg

" The vector x consists of the degree of freedom of the two rotors, the airframe. and the

Brengine throttle. The pilot’s controls are related to the individual controls by v = T¢vp.

t-rotor equations and hub reactions, and then substituting the hub reactions into the body
E-.equations of motion. By this means the terms in the coefficient matrices are constructed
§- that account for the coupling of the rotors and aircraft through the rotor hubs. It
- remains to account for the coupling that occurs through other paths. The rotor equations
are constructed with the aerodynamic thrust and moment terms in place for the dynamic
g inflow equations. These equations are completed at this stage, including the ground
B effect, rotor-rotor interference and rotor-airframe interference terms. The rotor equa-
i< tions are constructed with the torque in place for the rotational speed equation of
f motion. The coupled drive train degrees of freedom are introduced, and the torques of
i’ the two rotors are combined as required from the ¥, and ¥, equations. Then the equa-
k' tions are completed, including the engine and governor terms. Next the pitch/mast
§' bending coupling terms and the governor feedback terms are introduced. If the rotor is

> degrees of
on, elevator.

X, wbere ¢ f modelled as having a rigid control system, the equations are appropriately restructured

 rotation of M 1o account for the rigid pitch motion becoming a control variable rather than a degree of

= Xy ¥-freedom (py = p, in this limit).

freedom are It is frequently possible to reduce the order of the system of equations describing the

€ Q=c"F. f rotorcraft dynamics by considering a quasistatic approximation for certain of the degrees

cling.suc'cess)- b of freedom. Assume that the equations of motion have been reordered so that the
erivatives).

F quasistatic variables (xo) appear last in the state vector. The quasistatic approximation

sed interfer- b consists of neglecting the acceleration and velocity terms of these variables. Thus the
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equations of motion take the form

At 0/%, Ajt 0 xl>+ ASt A8 (x, _(B‘ ,

i o)L o)) [ 2 )C) - o)
The quasistatic variables now are not described by differential equations but rather by
linear algebraic equations. Solving the equations for x, and substituting in the x; equa- g
tions of motion gives then the reduced-order equations for the quasistatic approximation. 4
In the present analysis, the quasistatic approximation can be applied as appropriate to ’

the inflow dynamics. to the pitch and torsion degrees of freedom. to all the degrees of
freedom for either or both rotors, or even to all the degrees of {reedom except the r1g1d

body motions of the aircraft. The quasistatic approximation retains the low-frequency k.
dynamics of the eliminated degrees of freedom. Whether that is a satisfactory represen- &%
tation of the behavior must be established by comparison with the results of the higher
order model. The quasistatic approximation as implemented here does not give the low &
frequency response when applied to a two-bladed rotor. The source of this difficulty is §
the fact that the teetering equations of motion are still in the rotating frame. so the
response of the teetering modes to low frequency inputs from the nonrotating frame is

not at low frequency also, but rather at frequencies around 1/rev.

Using these linear differential equations, the aeroelastic stability characteristics of the §
system can be examined, in terms of the eigenvalues and eigenvectors. When the equa- §

tions have periodic coefficients, the eigenvalues are obtained by the methods of Floquet-

Liapunov theory. For time-invariant equations. the zeros, frequency response, transient §

response, or rms gust response can be evaluated.

4. SOME APPLICATIONS OF THE ANALYSIS

In Fig. 2 the lateral flapping angle calculated using the present analysis is compared. §
with experimental results. The data were obtained in a test of a mode! helicopter rotor in

a wind tunnel [5]. The four-bladed rotor had a radius of 0.832 m, solidity of 0.0891 and a :

Lock number equal 5.80. The tip speed was 137 m/sec. For the case shown here, the rotor -3
was operated at Cr/o = 0.08, and the shaft angle was adjusted so that the tip-path plane 3
angle of attack was maintained at approximately 1° (tilted aft). The wind tunnel walls .f
may have produced a significant angle of attack change at the lowest speeds shown, but ¢
both the theory and the experiment show that the influence of the angle of attack on the @
lateral flapping is very small at such low speeds. In the analysis, the blade rigid flap!§§
motion was the only degree of freedom considered. The lateral tilt angle of the tip-path 7§
plane relative to the shaft, positive toward the retreating side of the disk. is f;;. The *§§

O  EXPERIMENT
===« UNIFORM INFLOW
— — NONUNIFORM INFLOW, UNDISTORTED WAKE
——— NONUNIFORM INFLOW, FREE WAKE

4r

Fig. 2. Comparison of measured and calculated model rotor lateral flapping angles as a function
of advance ratio (Cr/o = 0.08 and «,,, = 1°).
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mduced velocity and circulation were evaluated at fifteen stations along the blade. con-
,oentrated toward the tip. The trailed vorticity in the wake directly behind the blade (the
; near wake) was represented by discrete vortex lines positioned midway between the
, pomts at which the circulation was calculated. The near wake extended for 30°. then the
Firailed vorticity was concentrated into a single line, modelling the rolled up tip vortex.
fThe inboard sheet of trailed vorticity was also represented by a single vortex line. but
ﬁwnh a large core radius to avoid unrealistically large induced velocity near the line. The
.shed wake was modelled with radial. discrete vortex lines (again with a large core radius).
" Four revolutions of the wake behind each blade were modelled. An undistorted wake
“l&geometry was obtained by assuming that each element of the velocity is convected
idownward at a rate equal to the mean induced velocity at the rotor disk. The free wake
b= geometry was also calculated. for two revolutions of the tip vortices only.
f: The lateral flapping angle of an articulated rotor depends primarily on the longitudinal
- gradient of the induced velocity distribution over the disk. The induced velocity in
iJorward flight is larger at the rear of the disk than at the front. which produces larger

¥iloads at the front. hence an aerodynamic pitch moment on the rotor. An articulated
rotor responds (o this moment like a gyro. so the tip-path plane tilts laterally, toward the

~advancing side (f,5 < 0). In forward flight there is also a small lateral flapping contribu-

tlon proportional to the coning angle. Figure 2 shows that the lateral flapping is under-
bredicted when uniform inflow is used, and even when nonuniform inflow based on the
ndistorted wake geometry is used. Below an advance ratio of about 0.16, it is necessary
to include the free wake calculation in order to obtain a good estimate of the lateral
apping. There is significant self-induced distortion of the tip vortices. resulting in

ade chord. The result of such distortion is a much larger longitudinal gradient of the
nduced velocity, which produces the observed lateral flapping. In this case the free wake

i 'ometry plac.ee the tip vortices 50 close to the blades that the Lalculated ﬂapping is

core radius. A value of 0.05R was used for the core radius here. There are a number of
gdactors in addition to the core radius that combine to determine the magnitude of the
gr:-vortex-induced loading. including the tip vortex strength. the extent of the tip vortex
Rirollup. lifting surface effects on the induced blade loading. and possibly even vortex

urstmg or vortex-induced stall on the blade. In the absence of complete information

bout each of these phenomena, the vortex core radius is a convenient parameter with
which to account for their cumulative influence on the rotor blade loading.

In Figs 3 and 4 the oscillatory loads measured on a full scale tilting proprotor are
:compared with calculated results. The data were obtained in a wind tunnel test of a
ssingle, gimballed proprotor on a powered test stand [6]. The three-bladed rotor had a
iradius of 3.81 m. a solidity of 0.089 and a Lock number of 3.67. The rotor was trimmed
susing longitudinal cyclic control so that the longitudinal flapping relative to the shaft was
izero. The lateral cyclic control was zero. In the analysis the following degrees of freedom
ywere used to define the blade motion: gimbal pitch and roll; three coupled flap-lag
'bendmg modes per blade: rigid pitch mode for each blade: and one elastic torsion mode
¥ per blade. Little influence on the blade loads was found using two to six bending modes.
for zero to two elastic torsion modes. Ten harmonics of the motion were calculated for
k cach degree of freedom. Static. two-dimensional airfoil characteristics were used. The
f.calculated inflow varied linearly over the rotor disk. The mean induced velocity was
® calculated from momentum theory with the ideal value multiplied by a factor of kKp =20
 to account for nonideal induced power losses, which are expected to be large for this
E rotor due to its high twist and small number of blades.

f The oscillatory beamwise bending moment as a function of thrust is shown in Fig. 3
75%).
f The beamwise moment was measured at 35% radius. relative to the blade principal axes.
k ‘The oscillatory load is one-half the difference between the maximum and minimum
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Fig. 3. Oscillatory beamwise bending moment on a tilting proprotor blade as a function of thrust
for 2, = 75" and Q = 565 rpm.

values occurring in a rotor revolution. In Fig. 4 the corresponding results are shown for
the oscillatory spindle chord bending moment (which was measured at the blade root,
relative to the shaft axes). The oscillatory loads are predicted well in Figs 3 and 4,
although the beamwise bending moments increase somewhat faster than predicted at the¢
highest thrust. The use of uniform inflow is generally adequate for the calculation of the}
oscillatory loads on this rotor. Further discussion and additional results are given in Ref.
[7].
In Fig. 5 the bound circulation calculated using the present analysis is compared with g

experimental results for a model rotor in hover. The data were obtained using a two-
component laser velocimeter to measure the circulation around a box enclosing the blade:
at a specified radial station [8.9]. The two-bladed rotor had a radius of 1.045m, a§
solidity of 0.0464 and a twist of —11°. The data in Fig. 5 are for the blade with af
rectangular tip planform. The rotor was operated at a tip speed of 76.6 m/sec, and at a @
thrust of Cy/o = 0.10. In the analysis, the induced velocity and circulation were evalue§
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Fig. 4. Oscillatory spindle chord bending moment on a tilting proprotor blade as a function of
thrust for a, = 75° and Q = 565 rpm.
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Fig. 5. Comparison of measured and calculated circulation for a two-bladed rotor in hover, with
by a rectangular tip planform.
.

{. ated at fifteen stations along the blade. concentrated toward the tip. The trailed vorticity
B in the near wake was represented by discrete vortex lines positioned midway between the
@ points at which the circulation was calculated. After an azimuth extent of 30°. the trailed
vorticity was concentrated into a line. to model the rolled up tip vortex. The azimuthal
wextent of the near wake was varied from 15 to 60°, and the number of radial stations
“from ten to fifteen, with little effect on the calculated loading. The inboard trailed
Fyorticity was represented by a single vortex line with large core radius. The azimuthal
8. increment in the wake model was 15°. Five revolutions of the wake behind each blade
F were modelled in this fashion. An additional thirty revolutions of the wake were

g8 modelled using rectangular vortex sheet panels to construct a cylinder of axial and

circumferential vorticity representing the tip vortices, and an axial line vortex represen-
.ting the root vortices. By this means the wake far from the rotor blade (extending
* # approximately to ten rotor radii below the disk) was economically accounted for: if this

bpart of the wake were neglected, the induced velocity at the rotor disk would be signifi-

:"f 'cantly underestimated. The tip vortex geometry was described by the two-stage vertical

- convection and exponential radial contraction model defined in Ref. [2] section 3.1.
; Recall that the parameters K,. K; and K, determine the position of the tip vortex when
¥ it encounters the following blade: K, determines the contracted radius in the far wake:
g% and K, determines the vertical convection after the first blade passage.
The correlation of the calculated and measured circulation distributions shown in
¥ Fig. 5 is quite good. The calculations used the measured position of the tip vortex when
B it first passed under the following blade and a value of 0.055 for K,. A tip loss factor of

W B = 0.985 was used, based on the measured position of the rolled up tip vortex at the
BB blade trailing edge. The circulation distribution was also calculated using the prescribed
- j! wake geometry models developed by Landgrebe [10], and by Kocurek and Tangler [11].

* There were small differences between the position of the vortex when it first passed

,‘7", under the following blade as predicted by these two models. and between the predicted
I and measured positions. These differences are within the scatter of the data originally

= used to construct the models. However, although the differences in the vortex positions
_' were slight, the differences in the calculated loading were not negligible [12]. The circu-
B lation calculation was definitely improved by using the measured vortex position. The
“loading was initially calculated using a value of K, = 0.0608 for the vertical convection
B. rate after the first blade passage. Since this parameter was not measured, its value was
E: chosen based on the prescribed wake models. Using K, = 0.0608, the calculated loading
kK was slightly lower outboard and higher inboard than measured [12]. In addition. the
¥ calculated induced power was only 3%, higher than the ideal momentum-theory induced
¥ loss, which is much better performance than would be expected. By using a 10%, smaller
£ value, K, = 0.0550, the correlation of the measured and calculated loading was im-
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Fig. 6. Comparison of measured and calculated circulation for a two-bladed rotor in hover. with
an ogee tip planform.

proved (Fig. 5), and the calculated induced power was 129, higher than ideal. a more
reasonable value. The circulation distribution was also measured for this model rotor ‘
with an ogee planform extending over the outer 10% of the blade tip [8]. The calculated |
and measured results are compared in Fig. 6; the correlation is nearly as good as for the 3
rectangular tip blade. The calculations used the measured position of the tip vortex when
it first passed under the following blade. and a value of 0.0500 for K,. For the ogee tip §
there are no corresponding prescribed wake models to provide a guide for the choice of ¥
K ,: the wake convection must be specified on the basis of the peak circulation and the
predicted induced power. The measured data showed the tip vortex rollup occurring at
0.94R with the ogee planform. so B = 0.94 was used. Properly modelling the tip vortex 48

which the prescribed wake models were constructed.

A reasonable prediction of the induced power was not obtained here using the pre-§
scribed wake models. The far wake convection parameter K, determines the density of {8
the circumferential vorticity in the wake. hence it controls the value of the mean induced: 3

priate level (and the correlation with the measured circulation distribution was im-§
proved). With one exception, this problem has been encountered in all recent investiga- i
tions of the influence of the wake on hover performance. The exception was the work of’
Landgrebe [10]. who obtained generally acceptable predictions of measured rotor per-#
formance using his wake geometry model. Summa and Clark [13] found that theit:#
performance calculation using a lifting surface theory was optimistic with the prescribed 338
wake model. Therefore they used a free wake calculation, which produced a 6.5%, smaller

value of K, and a 169, smaller value of K, hence a more reasonable induced power4
estimate (149, higher than ideal). In initial calculations with a new prescribed wake$
geometry model and a lifting surface theory, Kocurek and Tangler [11] found the power3
was about 15% lower than measured (actually less than ideal), although they used only#
four revolutions of the wake. With eight revolutions the calculated power was about 10%§
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- Jow. Since their wake geometry model was based on experimental data for the first four

A;,ls‘pirals. they attributed the discrepancy to the far wake influence. Specifically. they pro-

posed that the problem was due to the additional recirculation resulting from radial
-expansion of the wake. They accounted for this effect by adding a vortex ring below the
: disk to represent the diffused vorticity. With this model the performance calculations
-showed good agreement with the data. In a more recent work [14] the model has been

modified to represent the diffusion and entrainment in the far wake by having the wake
boundary expand radially at an angle of 15° from vertical. and decreasing K, inversely

~ proportional to the cross-sectional area of the wake. Again the wake was truncated

vertically, at 1.4 to 1.8R below the rotor disk in this case. These models for the far wake
seem excessively complex considering that no deterministic wake actually exists beyond

. about the first five spirals; and the sensitivity of the induced velocity at the rotor disk to

the details of the wake model decreases very rapidly with distance. The prescribed wake
geometry models are based on measured data for the tip vortex position from the blade
tip to four or five spirals below the disk. In most cases nearly the same results are
obtained from the various models available. So there is no reason to suspect the validity

~ of these models near the rotor, but neither is there reason to extrapolate them to the far

wake. The near wake determines the details of the loading distribution. while the inte-

> grated effect of the far wake determines the mean induced velocity level. The simplest
*approach is to use an idealized model for the far wake, which can be described primarily
-~y the vertical convection rate. It may be necessary to infer the value of K, in this far

- wake region from the performance measurements rather than from flow visualization
“data.

Recent developments of hover analyses have involved application of lifting surface

~theory to the rotary wing [11, 13, 14]. The results of these investigations are difficult to

interpret because of the strong involvement of the wake model in this problem. In some
cases the comparison of lifting line theory and lifting surface theory has been made with

--entirely different wake models. Yet the comparison is also misleading if exactly the same
} wake model is used. for there is no reason to expect the same wake model to be valid for
- both lifting line and lifting surface theories. The wing model and wake model are two
“halves of the same problem. so the comparison of lifting line theory and lifting surface
‘theory must be made using a fully consistent theory in each case. The ultimate test of the
- theories is comparison with experimental data. For the cases shown in Figs 5 and 6.

lifting line theory as used in the present analysis is quite adequate. From that it cannot
be generally concluded however that lifting surface theory is not needed for accurate

predictions of hover loading. The case investigated here involves a high aspect ratio

- blade. and the combination of high thrust and two blades makes the vertical separation

at the first vortex-blade interaction as large as is likely to be encountered. Other rotors
and other operating conditions may perhaps go beyond the limits of lifting line theory. A
general conclusion of the present work, supported by the results of these other investiga-
tions as well. is that a consistent and accurate wake model is the most important
requirement for an accurate analysis of the hovering rotor.

In Figs 7 and 10 calculated ground resonance stability results are compared with
measured data. The frequency and damping data were obtained in a hover test of a

 model hingeless rotor supported on a gimbal [15]. The three-bladed rotor had a radius

* of0.811 m, a solidity of 0.0494. and a Lock number of 6.1. For the cases considered here.

the untwisted blades were operated at zero pitch of the structural axes. However. the
cambered airfoil used produced a calculated thrust of Cy/o = 0.0056 in this condition.
The blades had flap and lag flexures at radial station 0.105R, with no pitch-flap or

.. pitch-lag coupling. The rotor hub was located 0.30R above the gimbal. The gimbal pitch
# and roll spring rates were such that resonances of the body modes with the regressing lag

mode occurred where the lag frequency was below once-per-revolution. Hence a ground
resonance instability was possible, depending on the damping in the system. The blade
flap flexure produced a rotating natural frequency of about 1.12/rev at high rotor speed.
The rotating natural frequency of the lag mode was 0.81/rev at the body pitch mode
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CALCULATIONS

WITH INFLOW DYNAMICS
—=—— WITHOUT INFLOW DYNAMICS

Fig. 9.
2, rpm
Fig. 7. Comparison of measured and calculated modal frequencies as a function of rotor speed,

for a hovering model hingeless rotor on a gimbal. great]y ove
quasistatic
resonance (585 rpm). and 0.69/rev at the body roll mode resonance (745 rpm). In the 4 unsatisfactc
analysis, the only blade motion considered was the fundamental flap and lag modes. g body ffequ'
Higher bending modes and the torsion motion were neglected (the blade was very stiff in :§ frequer%cws
torsion). The trim flap and lag deflections of the blade were small for this low thrust * regressing |
operating condition. The degrees of freedom used in the flutter analysis were the flap and § occur arou
lag motion of the blades, the body pitch and roll motions. and the rotor inflow dynamics "4 was not pre
variables. The coning, collective lag. and uniform inflow degrees of freedom form a y time lag is
separate set that decouples from the ground resonance problem in hover. The inflow : evidently is
dynamics model relates induced velocity components that vary linearly over the rotor } accur‘ate]y]
disk to the net aerodynamic pitch and roll moments of the rotor. including a time lag (see. £ The import
section 3.1). The inertias, nonrotating frequencies. and nonrotating damping of the rotor ‘h‘c blade fl.
and body were set to the measured values. , will then py

The measured and calculated frequencies of the regressing lag mode. body pitch mode;.'.
and body roll mode are compared in Fig. 7. The damping of these modes as a function of :§ o
rotor speed is presented in Figs 8 to 10. (The eigenvalues are ¢ + iw, where w is the 3 The origi
frequency and ¢ the damping.) The correlation is good when the inflow dynamics model ‘Jf  been despri
is included. The frequencies are predicted well (the shift of the body mode frequencies? appropnate

below 150 rpm is due to resonance with the regressing flap mode). The blade and body ;38
mode damping is predicted well, although smaller values of the system structural damp- 3
ing would improve the correlation for the lag mode at the instability. Without the inflow §
dynamics model, the calculated frequencies of the body modes (not shown) were too low"}
“o 250 200 600 360 10100
€, rpm

Fig. 8. Measured regressing lag mode damping compared with calculations {with and without Fig. 10,

inflow dynamics). See Fig. 7 for legend.
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Fig. 9. Measured body pitch mode damping compared with calculations (with and without
inflow dynamics). See Fig. 7 for legend.

eatly overpredicted at high rotor speed (Fig. 10). Calculations were also made using a
uasistatic inflow dynamics model, in which the time lag was neglected. The results were
I“unsatisfactory, principally due to shift in the body mode frequencies. The nonrotating
I¥-body frequencies were still predicted well, but for rotor speeds above about 250 rpm the
B frequencies were 10-20% too high (0.3-0.5 Hz). Consequently the resonances with the
egressing lag mode were shifted to higher rotor speeds, with the instability predicted to
g occur around 800 rpm instead of 750 rpm as measured. Also, the body mode damping
§iwas not predicted as well as with the complete inflow dynamics model. The effect of the
Etime lag is to eliminate the influence of the inflow dynamics at high frequencies, which
gevidently is a crucial aspect of the phenomenon. It i is concluded that the present analysis
urately predicts ground resonance stability characteristics involving hingeless rotors.
The importance of the inflow dynamics may be attributed to the cantilever restraint of
¥ the blade flap motion, which allows the rotor to develop net pitch and roll moments that
g3 will then produce induced velocity perturbations.

5. CONCLUDING REMARKS

-~ The origins, development and structure of a comprehensive analysis for rotorcraft have
}’ been described. Since the analysis is implemented in a digital computer program, it is
BEk appropriate to close with a few rules governing the use of large codes.

Sl -3.0 /

T

600 800 1000
Q, rpm
k- Fig. 10. Measured body roll mode damping compared with calculations {with and without inflow
D dynamics). See Fig. 7 for legend.




216 WAYNE JOHNSON

When using a large code. the results should never be accepted without scrutiny. It wil]§
usually be possible to establish that the results are satisfactory for the intended purpose, §
However, by adopting the habit of questioning the code. the user will be more likely to

the user will develop a better understanding of what the program is doing. _

For any new problem. the code probably will not work right the first time. and it may§
not run at all. A successful calculation will ordinarily be achieved only after some effort 5§
for this kind of analysis is still much an art. Both the mathematical model and thes}
solution procedure frequently require a little help from the engineer. :

useful life. The progam cannot be expected to be static. for the problems it is intended to}}
solve are not. The important thing is not to avoid changing the code, but rather to
maintain control of the process. ,

The job could aiways be done better. The hard task is recognizing when it should be:
done better. Any good code will have a range of validity extensive enough to ensure it a;§
long life. Eventually however. problems will begin to overwhelm it and the technolog :
will march beyond it. That is the time to start work on the next generation of codes.
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