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ABSTRACT
We model the growth of Jupiter via core nucleated accretion, applying constraints from hydrody-

namical processes that result from the disk–planet interaction. We compute the planet’s internal
structure using a well tested planetary formation code that is based upon a Henyey-type stellar
evolution code. The planet’s interactions with the protoplanetary disk are calculated using 3-D hy-
drodynamic simulations. Previous models of Jupiter’s growth have taken the radius of the planet to
be approximately one Hill sphere radius, RH. However, 3-D hydrodynamic simulations show that only
gas within ∼ 0.25RH remains bound to the planet, with the more distant gas eventually participating
in the shear flow of the protoplanetary disk. Therefore in our new simulations, the planet’s outer
boundary is placed at the location where gas has the thermal energy to reach the portion of the flow
not bound to the planet. We find that the smaller radius increases the time required for planetary
growth by ∼ 5%. Thermal pressure limits the rate at which a planet less than a few dozen times as
massive as Earth can accumulate gas from the protoplanetary disk, whereas hydrodynamics regulates
the growth rate for more massive planets. Within a moderately viscous disk, the accretion rate peaks
when the planet’s mass is about equal to the mass of Saturn. In a less viscous disk hydrodynamical
limits to accretion are smaller, and the accretion rate peaks at lower mass. Observations suggest
that the typical lifetime of massive disks around young stellar objects is ∼ 3 Myr. To account for
the dissipation of such disks, we perform some of our simulations of Jupiter’s growth within a disk
whose surface gas density decreases on this timescale. In all of the cases that we simulate, the planet’s
effective radiating temperature rises to well above 1000 K soon after hydrodynamic limits begin to
control the rate of gas accretion and the planet’s distended envelope begins to contract. According to
our simulations, proto-Jupiter’s distended and thermally-supported envelope was too small to capture
the planet’s current retinue of irregular satellites as advocated by Pollack et al. [Pollack, J.B., Burns,
J.A., Tauber, M.E., 1979. Icarus 37, 587–611].
Subject headings: Jovian planets; Jupiter, interior; Accretion; Planetary formation; Planet-disk inter-

action

1. INTRODUCTION
According to the core nucleated accretion model, gi-

ant planets begin their growth via the same process
of agglomeration of solid bodies as do terrestrial plan-
ets; however, unlike terrestrials, the solid cores of giant
planets reach masses large enough to capture substantial
amounts of gas from their star’s protoplanetary disk be-
fore said disk dissipates (Lissauer and Stevenson 2007).
Previous models of this process have simulated either the
thermal factors that limit the ability of a planet to re-
tain gas (Bodenheimer and Pollack 1986, hereafter BP86;
Pollack et al. 1996, hereafter PHBLPG96; Bodenheimer
et al. 2000, hereafter BHL00; Ikoma et al. 2000; Hubickyj
et al. 2005, hereafter HBL05; Alibert et al. 2005a,b; Mar-
ley et al. 2007) or the disk interaction physics that gov-
erns the flow of gas to a planet (Nelson et al. 2000;
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D’Angelo et al. 2003, hereafter DKH03; Bate et al. 2003).
Here we consider both thermal and gas flow limits to gi-
ant planet growth, and present the first models of the
growth of Jupiter that are constrained by detailed simu-
lations of both of these factors.

A planet of order one to several Earth masses (M⊕)
at a distance of about 5 AU from the central star is able
to capture an atmosphere from the protoplanetary disk
because the escape speed from its surface is large com-
pared to the thermal velocity of gas in the disk. How-
ever, such an atmosphere is very tenuous and distended,
with thermal pressure pushing gas outwards and thereby
limiting further accretion of gas. The key factor gov-
erning the ability of planet to accumulate additional gas
when the mass of the atmosphere is less than the mass
of the core is the planet’s ability to radiate the energy
that is provided to it by the accretion of planetesimals
and gravitationally-induced compression of gas. The es-
cape of this energy cools the gaseous envelope, allowing
it to shrink and thereby enabling more gas to enter the
planet’s gravitational domain. Evolution occurs slowly,
and hydrostatic structure is generally a very good ap-
proximation. Once a planet has enough mass for its self-
gravity to compress the envelope substantially, its ability
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to accrete additional gas is limited only by the amount of
gas available. Hydrodynamic limits allow quite rapid gas
flow to a planet in an unperturbed disk. But a planet al-
ters the disk by accreting material from it and by exerting
gravitational torques upon it (Lin and Papaloizou 1979;
Goldreich and Tremaine 1980). Both of these processes
can lead to gap formation and isolation of the planet
from the surrounding gas.

Our approach is to follow the physical structure
and thermal evolution of the growing giant planet
in the spherically symmetric (one-dimensional) quasi-
hydrostatic approximation, and to incorporate the three-
dimensional hydrodynamic interactions between the
planet and the circumstellar disk via boundary con-
ditions at the planet’s outer ‘surface’. Mass and en-
ergy transport within the planet are followed using the
same planetary evolution code that we have employed in
previous models of giant planet formation (BP86; PH-
BLPG96; BHL00; HBL05; Marley et al. 2007).

Bodenheimer and Pollack (1986) prescribed the accre-
tion rate of solids to be constant with time. Pollack
et al. (1996) replaced this model by assuming that the
planet was an isolated embryo that underwent runaway
growth within a disk of dynamically cold, non-migrating,
planetesimals. The accretion rate of solids depends upon
the distribution of planetesimals as well as the planet’s
mass and its effective radius for accretion of planetesi-
mals. The planet’s capture cross-section was computed
using the physical properties of the planet determined by
the planetary structure calculation. The rate at which
the planet accreted solids, ṀZ , for specified planet cross-
section and disk surface density, eccentricities and incli-
nations of planetesimals within the planet’s feeding zone,
was determined using formulae that Greenzweig and Lis-
sauer (1992) derived from 3-body numerical studies of
planetesimal trajectories. This prescription has been
used with slight modifications in most of our subsequent
calculations, including all of those presented herein.

Our previous simulations have used simple ad hoc pre-
scriptions for the interactions of the planet with the
gaseous disk. We placed the outer boundary of the planet
near its Hill sphere radius, RH, during most of its growth.
The radius of the planet’s Hill sphere is given by:

RH = rp

(
Mp

3M?

) 1
3

, (1)

where Mp (= MXY +MZ) is the (gas + solids) mass of
the planet, M? the mass of the star, and rp is the orbital
radius of the planet. More precisely, BHL00, HBL05,
and Marley et al. (2007) took the planet’s boundary to
be the location where the thermal velocity of the H2

gas molecules gave them sufficient energy to move up-
wards to 1RH from the planet’s center. We limited the
rate at which the planet could accrete gas from the disk
to a maximum of ∼ 10−2 M⊕ per year, which is ap-
proximately the Bondi rate. We extended many of our
runs to a pre-determined mass limit of a Jupiter mass
or more, and in a few cases we followed the ensuing
phase of planetary contraction for 4.5 Gyr. But because
of the approximate treatment of the later phases of gas
accretion, we have always emphasized as our primary
results the crossover time (when the planet’s gas mass
equals the mass of its condensables) and the correspond-
ing crossover mass. The total formation time for the

planet is generally only slightly longer than the crossover
time.

We present herein results of new simulations using our
venerable 1-D planetary formation code to follow the evo-
lution of the planet’s structure, but now incorporating
3-D hydrodynamic calculations for prescriptions of the
planet’s size and maximum rates of gas accretion. In
some of our calculations, we gradually reduce the density
of gas within the surrounding disk to provide a more real-
istic simulation of the final phases of the planet’s growth.

In the models presented herein, we neglect orbital mi-
gration. During the phase of runaway gas accretion, the
amount of radial migration that is expected before the
planet reaches one Jupiter-mass is on the order of 20%
of its initial orbital radius (D’Angelo and Lubow 2008).
Orbital decay due to resonant torques during the phase
of slow gas accretion (Phase II) may be more substan-
tial. However, a number of mechanisms may conspire to
reduce those migration rates (see Papaloizou et al. 2007,
for a review). There is presently a great deal of uncer-
tainty surrounding these issues, so rather than rely on
some poorly constrained and not yet well-understood mi-
gration mechanism, our simulations simply assume that
the orbit of the planet remains fixed. The differing migra-
tion scenarios may affect giant planet growth in different
ways, but our assumption of no migration is extreme in
the sense that the isolation mass of a core within a plan-
etesimal disk is larger for any non-zero migration of the
planet, because the radial motion of the planet brings it
into regions of the disk that are undepleted of planetesi-
mals (Lissauer 1993; Alibert et al. 2005a). So migrating
planets, or planetesimals migrating as a result of gas drag
(Kary et al. 1993; Kary and Lissauer 1995), are likely
capable of forming somewhat larger cores for a given lo-
cation and disk surface mass density of solids than are
the non-migrating planets that we simulate herein. Com-
peting embryos in nearby accretion zones can act in the
opposite sense from the above mentioned processes by re-
moving solids from the planet’s reach. But if the planet
accretes an embryo, said embryo can bring with it solids
from somewhat beyond the planet’s nominal accretion
zone.

Our 1-D accretion code is described in HBL05 and
references therein. Details on the 3-D hydrodynamic
numerical code can be found in DKH03 and references
therein. We present our limits on the planet’s physical
extent and gas accretion rate, derived from 3-D hydrody-
namic simulations, in Section 2. Section 3 discusses the
physical parameters for our simulations. The results of
our calculations are presented in Section 4. The scenario
of capture of irregular satellites within proto-jupiter dis-
tended and thermally-supported envelope (Pollack et al.
1979) is discussed within the framework of our models
for the growth of Jupiter in Section 5. We conclude in
Section 6 with a discussion of our findings and their im-
plications.

2. ENVELOPE SIZE AND MAXIMUM GAS
ACCRETION RATES

Three-dimensional simulations of a disk with an em-
bedded planet are used to estimate (i) the region of
space within which gas is bound to a planetary core (Sec-
tion 2.1) and (ii) the maximum accretion rate at which
the disk can feed the inner parts of a growing planet’s
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Hill sphere (Section 2.2).

2.1. Outer Boundary of Planet’s Envelope
In order to evaluate the volume of gas that is gravita-

tionally bound to a planet, we adopt disk models similar
to those described in DKH03. The simulation region ex-
tends from 0 to 2π in azimuth and over a radial range
from 2 to 13 AU, so that the disk boundaries are well sep-
arated from the planet’s orbit. The pressure scale height
of the disk at the planet’s orbit, Hp, is taken to be 5% of
the distance to the star; this corresponds to a tempera-
ture of T = 115 K for a gas of mean molecular weight 2.25
at a distance of 5.2 AU from a 1 M� (solar mass) star.
The dimensionless disk viscosity parameter is assumed to
be α = 4×10−3. We consider planet masses ranging from
10 M⊕ to 50 M⊕, because at smaller masses the planet’s
envelope is very tenuous, and because at a mass exceed-
ing ∼ 70 M⊕ the planet self-compresses to a size much
smaller than that of its Hill sphere. We use grid systems
that resolve the mass density and the velocity field in
the vicinity of the planet on length scales shorter than
4% of the Hill radius; thus the circumplanetary subdisk
is also resolved. Simulations are started from an unper-
turbed Keplerian disk, whose rotation is corrected for
effects of the gas pressure gradient. Models are evolved
for about 250–300 orbital periods, at which time the flow
has reached a quasi-stationary state. Tracer (massless)
particles are deployed in the quasi-stationary flow, within
a distance of approximately RH from the core, and their
trajectories are integrated for tens of orbital periods of
the planet around the Sun. Several initial distributions
of tracers are used, for purposes of a sensitivity study,
containing from 500 to 6000 particles.

The tracers are advected by the flow field and a second-
order Runge-Kutta algorithm is used to advance their
position in time. Gas velocities are interpolated to
the tracers’ positions via a monotonized harmonic mean
(D’Angelo et al. 2002), which is second-order accurate
and capable of dealing with large gradients and shock
conditions. Therefore, the procedure is second-order ac-
curate in both space and time.

We adopt a conservative approach to identify trajec-
tories trapped inside the gravitational potential of the
planet. Indicating with si(t) the distance of the i-th par-
ticle from the center of the planet at time t, a tracer is
marked as bound if si(t)/si(0) < ζ along its calculated
trajectory, where si(0) < RH. The number of bound
tracers can grow as ζ increases because particles can tem-
porarily move farther away from their deployment sites
(i.e., ζ > 1) before approaching the planet’s center and
being finally accreted. However, the number of trapped
trajectories is expected to eventually converge, upon in-
creasing ζ, since particles that escape to librating or cir-
culating orbits quickly move far away from the planet.
Therefore, to select bound tracers, we increase the value
of the parameter ζ until the number of selected trajec-
tories does not change any longer, at which point we as-
sume that the number of trapped particles has converged.
Finally, we check that tracers discarded according to this
procedure move out of the planet’s Hill sphere and thus
return to the circumstellar disk. Note that the approach
adopted here does not characterize as bound material gas
that moves along trajectories originating outside of the
Hill sphere and accreting onto the planet.

The initial distribution of bound particles is, in gen-
eral, not spherically symmetric around the core, but it is
roughly symmetric relative to the disk midplane, as dis-
played in Fig. 1. This figure shows positions (over about
3 orbital periods of the planet around the Sun) of tracers
bound to a 10 M⊕ (top) and a 30 M⊕ (bottom) core and
selected according to the procedure outlined above. The
center of the planet is located at the origin of the axes
and distances are normalized to RH. Blue dots indicate
positions with si(t) < RH/4, whereas orange dots mark
positions of particles trapped beyond RH/4.

Given the necessity to describe the region containing
bound particles with a single length for our 1-D plane-
tary structure calculations, we estimate the radius of the
largest sphere centered on the core and enclosed in the
initial distribution of selected particles. This is done by
considering the area obtained from the intersection of the
volume occupied by selected particles with the disk mid-
plane and evaluating the radius of the largest circle cen-
tered on the core and enclosed in this area. For the cases
we investigate, we obtain a radius ranging from ∼ RH/4
to ∼ RH/3. An example is illustrated in Fig. 2. The
left panel shows the initial positions of particles deployed
close to the disk midplane and within RH/2 of a 10 M⊕
(top) and a 30 M⊕ (bottom) core: blue circles represent
bound tracers whereas orange circles represent particles
that eventually escape from the core’s Hill sphere, as
can be seen from their trajectories displayed in the right
panel.

2.2. Gas Accretion Rates
We use the set of simulations in DKH03, together with

analogous new simulations, to evaluate the maximum ac-
cretion rate at which a disk, perturbed by an embedded
planet, can deliver gas to the planet’s vicinity. As be-
fore, we first consider disks with viscosity α = 4 × 10−3

and local temperature T = 115 K. The numerical reso-
lution is comparable to that of simulations discussed in
the previous section. In these calculations, the accretion
of gas proceeds almost uninhibited and is only limited by
tidal effects (e.g., the formation of a density gap) or lack
of supply from the disk. Therefore, accretion rates de-
scribed in this section represent upper limits to the rate
at which the disk can feed the inner parts of a planet’s
Hill sphere.

We obtain gas accretion rates, ṀXY (MXY denotes
the mass of the H/He component of the planet), for plan-
ets ranging in mass from about 1 M⊕ to 2 MJ (Jupiter
masses). Data can be well fitted with a second-order
polynomial written as

log

(
ṀXY

Σgr2
p/P

)
≈ c0 + c1 log

(
Mp

M?

)
+ c2 log2

(
Mp

M?

)
,

(2)
where Σg is the unperturbed surface density of gas at
the orbital radius of the planet, rp, and P is the planet’s
orbital period. The coefficients are: c0 = −18.67,
c1 = −8.97, and c2 = −1.23. Gas accretion rates ob-
tained from hydrodynamical models can be re-scaled by
the initial mass density in the disk, at the planet’s or-
bital radius, because continuity and momentum equa-
tions that are solved in the calculations (see D’Angelo
et al. 2005) can be normalized to an initial mass density
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Fig. 1.— Trajectories in a frame rotating at the angular velocity of the planet (around the Sun) of ∼ 2000 tracer particles that are bound
to a 10 M⊕ (top) and a 30 M⊕ (bottom) point-mass planet, located at the origin. Bound particles were selected according to the procedure
described in the text. Axes are in units of the Hill radius, RH. Each dot marks the position occupied by a tracer at a given time. Positions
within RH/4 of the center of the planet are marked as blue dots, while positions beyond this distance are marked as orange dots.

(at rp, for example) when pressure is directly propor-
tional to mass density. Therefore, Eq. (2) can be used to
derive a gas accretion rate as a function of the planet’s
mass, its orbital radius, and the unperturbed surface den-
sity.

Although we were able to halt the accretion of the
planet at Jupiter’s mass in a disk with α = 4 × 10−3,
this required either a very narrow gas feeding zone or a
very special timing of disk dissipation (Section 4). Thus,
in order to find a more plausible mechanism for form-
ing Jupiter-mass planets, we modeled planetary growth
within a lower viscosity protoplanetary disk. We per-
formed simulations analogous to those described above
for a planet within a disk of the same temperature but
lower viscosity, α = 4 × 10−4. The results for both vis-
cosities are plotted in Fig. 3, together with the fit given
by Eq. (2) for α = 4 × 10−3 and a piecewise parabolic
fit (not given here because it cannot be written in com-
pact form) to accretion rates obtained from calculations

with α = 4×10−4. In both cases, accretion rates account
for surface density perturbations which depend on planet
mass and disk viscosity. Note that planets in the lower
viscosity disk cannot accrete gas as rapidly as planets of
the same mass within a disk that is ten times as viscous.
This is because density perturbations are stronger in the
lower viscosity case, even at small planet masses. The
difference in accretion rates is most profound for planets
of Jupiter’s mass and larger. The shift of the peak ac-
cretion rates towards smaller planet masses as kinematic
viscosity decreases is in qualitative agreement with the
results of Tanigawa and Ikoma (2007).

So long as the gas density close to the planet’s or-
bit remains nearly undepleted, accretion rates in Fig. 3
can be understood in terms of gas accretion within the
Bondi sphere, at a rate ṀXY ∝ M3

p for Mp/M? .

(Hp/rp)3/
√

3, and accretion within the Hill sphere at
a rate ṀXY ∝ Mp for larger planet mass (see D’Angelo



Models of Jupiter’s Growth 5

Fig. 2.— Initial positions (left) and trajectories (right), in a frame rotating at the angular velocity of the planet, of about 1000 tracer
particles deployed close to the disk midplane and within RH/2 of a 10 M⊕ (top) and a 30 M⊕ (bottom) point-mass planet located at the
origin. Blue circles (left) and dots (right) indicate bound particles according to the procedure described in the text. Orange circles or dots
represent particles that leave the planet’s Hill sphere and return to the circumstellar disk.

and Lubow 2008, for details). When density perturba-
tions can no longer be neglected (RH ∼ Hp) and a gap
starts to form, the accretion rate drops as the planet’s
mass increases. The limiting gas accretion rates dis-
cussed here are not much affected by planet’s migration
as long as the migration timescale is larger than the gap
formation timescale.

2.3. Effects of Circumsolar Disk Hydrodynamics on
Jupiter’s Accretion of Gas

We have modified our basic 1-D planet growth code to
account for the limits of planet size and the supply of gas
to the planet found with 3-D hydrodynamic calculations.
As in BHL00 and HBL05, we define the accretion radius
as

RA =
GMp

c2s/k1 +GMp/ (k2RH)
, (3)

where cs is the sound speed in the disk and k1 and k2

are constants. In the limit of large RH, RA reduces to k1

times the Bondi accretion radius. In the limit of small
RH, RA reduces to k2RH. In previous studies, both k1

and k2 had been set to 1. In most of the simulations
presented herein, we set k1 = 1 and k2 = 1/4, based on
the calculations described in Section 2. When thermal
factors limit the gas accretion rate, ṀXY is obtained
through the requirement that the computed radius of
the planet, Rp, actually matches RA. When the hydro-
dynamics of the disk limits ṀXY , then the radius Rp

is determined by the procedure outlined in BHL00, and
Rp < RA.

In past work, the gas rate was arbitrarily capped at
1.053 × 10−2 M⊕/yr to account for the Bondi accretion
limit. In most of the present calculations, the hydrody-
namic upper bound on the gas accretion rate is deter-
mined from the results shown in Fig. 3.

3. PARAMETERS OF OUR SIMULATIONS
In analogy with the principal simulation of HBL05,

denoted 10L∞4, all of our planetary evolution simula-
tions are performed at 5.2 AU from a 1 M� star within a
disk that has an initial surface mass density of solids of
10 g cm−2, which are in the form of 100 km radius plan-
etesimals5, and of gas Σg(t = 0) = 700 g cm−2. Also as
in run 10L∞, we assume that the opacity due to grains

4 The run designator 10L∞ is used by HBL05 to denote that
the surface density of solids is 10 g cm−2, the dust opacity in the
planet’s envelope is 2% that of the interstellar medium and there
is no cutoff in accretion of planetesimals by the planet. As these
three properties hold for all of the simulations presented herein, we
use a new set of designators, discussed below, for all of our new
runs.

5 As pointed out by Fortier et al. (2007), using a more phys-
ically sophisticated model to compute the eccentricities and in-
clinations of planetesimals (Kokubo and Ida 1998; Kokubo et al.

2000; Thommes et al. 2003) gives a lower value of ṀZ for a given
planetesimal size. However, growth of the core is more rapid with
smaller planetesimals (PHBLPG96; Fortier et al. 2007). Thus, our
simulations probably correspond more closely to a disk of ∼ 1–
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Fig. 3.— Limiting accretion rates as a function of the planet’s mass obtained from 3-D hydrodynamical calculations of a planet interacting
with a circumstellar disk (see text for further details). Accretion rates are in units of the unperturbed surface density, Σg, at the planet’s
orbital radius, rp, and the planet’s orbital period, P . Filled circles correspond to results for a disk with a viscosity α = 4 × 10−3 at the
planet’s location. Empty circles are for a disk with α = 4× 10−4. The disk temperature at the orbital radius of the planet is T ∼ 100 K.
Masses on the lower axis are in units of the solar mass but they can be rescaled by the mass of the star, which is the unit of mass in the
3-D calculations. The thick orange curve represents a fit to the high viscosity data according to Eq. (2) and the appropriate coefficients.
The thin blue curve is a piecewise parabolic fit to the low viscosity data.

within the growing planet’s envelope is 2% that of in-
terstellar gas. In HBL05, we performed additional runs
in order to examine the effects of differing values of the
opacity of the planet’s atmosphere and the initial surface
mass density of solids in the disk, and of terminating the
accretion of solids prior to the termination of gas ac-
cretion. Herein, we study the orthogonal processes of
(1) varying our prescription for the physical size of the
planet’s envelope, (2) changing the formula for the max-
imum rate of gas accretion as a function of the planet’s
mass, and (3) reducing the gas surface density of the
protoplanetary disk as a function of time throughout the
accretion epoch.

The sixteen new simulations (runs) that we report
herein are divided into five groups. The input param-
eters for each of these runs are listed in Table 1.

In the three groups of runs whose labels begin with
“1”, referred to collectively as “groups 1”, T = 150 K
and the gas surface density remains constant throughout
the computation, as in HBL05. The purpose of these sim-
ulations is to determine the effects of restricting gas flow
onto the planet using the formula given by 3-D accre-
tion simulations and/or reducing the radius of the outer

20 km radius planetesimals rather than the nominal size of 100 km.
The sizes of the planetesimals in all of these models have been
chosen in a largely ad hoc manner. A better estimate of ṀZ re-
quires more sophisticated calculations in which planetesimal sizes
and velocities are computed in a self-consistent manner rather than
merely prescribed.

boundary of the planet’s envelope by up to a factor of
four to account approximately for unbound protoplan-
etary disk gas flowing through the planet’s Hill sphere
(Fig. 2). Specifically, Run 1G begins with the evolution
found in 10L∞, but uses the gas flow limits from the 3-
D calculations (Eq. 2) in place of the constant maximum
gas accretion rate ṀXY = 1.053 × 10−2 M⊕ per year
that was inspired by a Bondi-type estimate and used in
our previous studies. Run 1s uses the same formula-
tion as 10L∞ except that the planet’s accretion radius,
RA, (which prior to the onset of hydrodynamic limits to
ṀXY lies at the outer boundary of the planet’s envelope)
is placed at the radius where the gas has enough thermal
energy to escape to RH/4 rather than to RH. Run 1sG
has the same planet size as Run 1s and the same limits on
gas flow as in simulation 1G. Run 1xsG provides a test of
the sensitivity of moving the outer boundary of the enve-
lope significantly inwards throughout the planet’s evolu-
tion. In Run 1xsG we (arbitrarily) set the outer bound-
ary of the envelope to be 1/4 as far from the center of
the planet as in 10L∞ and use the same limits on the gas
flow as in Runs 1G and 1sG (i.e., we set k1 = k2 = 1/4 in
Eq. 3). In order to produce planets with mass equal to
that of Jupiter, we taper off the accretion rate by multi-
plying the calculated maximum rate of gas accretion by a
function which begins at unity when Mp = 0.85 MJ and
drops linearly with the planet’s mass so that it vanishes
when Mp = 1 MJ ; this is the same procedure as was used
by HBL05.
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TABLE 1
Input Parameters

Run RA σXY (g/cm2) Tneb (K) α ṀXY,limit (M⊕/yr) limiting mass

10L∞ escape to RH 700 150 — 1.053× 10−2 1 MJ

1G escape to RH 700 150 4× 10−3 Eq. (2) 1 MJ

1s escape to 0.25RH 700 150 — 1.053× 10−2 1 MJ

1sG escape to 0.25RH 700 150 4× 10−3 Eq. (2) 1 MJ

1xsG 0.25×(escape to RH) 700 150 4× 10−3 Eq. (2) 1 MJ

2h escape to 0.25RH 700 115 4× 10−3 Eq. (2) none
2hJ escape to 0.25RH 700 115 4× 10−3 Eq. (2) 1 MJ

2l escape to 0.25RH 700 115 4× 10−4 Fig. 3 none
2lJ escape to 0.25RH 700 115 4× 10−4 Fig. 3 1 MJ

3h escape to 0.25RH Eq. (4) 115 4× 10−3 Eq. (2) none
3hJ escape to 0.25RH Eq. (4) 115 4× 10−3 Eq. (2) 1 MJ

3h4RH escape to 0.25RH Eq. (4) & 4RH 115 4× 10−3 Eq. (2) none
3hRHJ escape to 0.25RH Eq. (4) & 3.2RH 115 4× 10−3 Eq. (2) 1 MJ

3l escape to 0.25RH Eq. (4) 115 4× 10−4 Fig. 3 none
3lJ escape to 0.25RH Eq. (4) 115 4× 10−4 Fig. 3 1 MJ

3l4RH escape to 0.25RH Eq. (4) & 4RH 115 4× 10−4 Fig. 3 none
3lRHJ escape to 0.25RH Eq. (4) & 11RH 115 4× 10−4 Fig. 3 1 MJ

All simulations in groups 2 and 3 assume the temper-
ature of the disk (and thus at the upper boundary of the
planet as long as the planet’s envelope remains in con-
tact with the disk) is 115 K, the value used in the 3-D
calculations for a gas of mean molecular weight 2.25. The
planet radius prescription for all of these groups is the
same as used for Runs 1s and 1sG.

In group 2, as in groups 1, the surface density of the
gas remains constant at Σg = 700 g cm−2. In group 3,
the surface density of gas within the disk drops linearly
according to the formula:

Σg(t) =

{
700 g cm−2

(
3 Myr−t

3 Myr

)
if t ≤ 3 Myr

0 if t > 3 Myr
. (4)

The above equation accounts for disk dispersal in the
planet formation region over timescales suggested by ob-
servations (Haisch et al. 2001) and recent theoretical
models of disk photoevaporation due to combined action
of FUV, EUV, and X-ray photons emitted by a solar-
mass star (Gorti and Hollenbach 2008).

In the “h” runs within groups 2 and 3, the dimension-
less disk viscosity is assumed to be α = 4 × 10−3, and
therefore the limiting gas accretion rate is taken from
the 3-D calculations for disks with this viscosity (as in
Runs 1G, 1sG and 1xsG), as given by Eq. (2). For the
“l” runs within groups 2 and 3, the lower viscosity disk,
α = 4 × 10−4, is assumed, and the piecewise parabolic
fits shown as a narrow blue curve in Fig. 3 are used for
the upper bound of the planet’s gas accretion rate.

In Runs 3h and 3l, the planet continues to accrete
for the entire 3 Myr that gas is assumed to be present.
Analogously, the planet’s accretion is halted (in this case
abruptly) after 3 Myr in Runs 2h and 2l. Accretion is
terminated when the planet reaches 1 MJ in Runs 2hJ,
2lJ, 3hJ and 3lJ. For Runs 2hJ, 2lJ, and 3hJ, the same
taper as used for groups 1 was applied, but using this
prescription for Run 3lJ did not provide adequate mass
to the planet, so we began the linear tapering when the
planet mass was 0.975 MJ rather than 0.85 MJ .

We account for depletion of the gas in the disk via

accretion onto the planet as well as the linear decline
from the overall dissipation of the protoplanetary disk in
Runs 3h4RH, 3hRHJ, 3l4RH and 3lRHJ. However, gas
pressure gradients can act to replace accreted gas, so
rather than taking the gas loss rate within the planet’s
gas feeding zone to be the sum of (i) the planet’s accre-
tion of gas and (ii) the linear gas surface density drop-off
rate assumed for the overall disk multiplied by the area
of the planet’s gas feeding zone, we take the instanta-
neous gas loss rate to be the larger of these two quan-
tities. We take the size of the planet’s gas feeding zone
to be proportional to the size of its Hill sphere, so the
gas feeding zone expands with the growth of the planet
(Eq. 1) into regions not depleted by previous accretion
by the planet. Note that these more distant regions are
still affected by overall gas removal of the disk according
to Eq. (4). We account for the expansion of the planet’s
gas feeding zone similarly to our formula for computing
the surface density of solids (Section 2.1 of PHBLPG96).
In Runs 3h4RH and 3l4RH, the half-width of the planet’s
gas accretion zone is taken to be 4RH, the same as its
solids accretion zone, and gas is allowed to accrete un-
til there is no gas left. In Runs 3hRHJ and 3lRHJ, we
choose (by an iterative procedure) the size of the gas ac-
cretion zone to be 3.2RH and 11RH, respectively, so that
the feeding zone runs out of gas when the planet’s mass
is ≈ 1 MJ .

4. RESULTS
In this section, we present the results of all of the sim-

ulations described in Section 3. Readers interested in a
summary of these results may skip to Section 6, which
includes a figure displaying the temporal evolution of the
mass, radius and luminosity of the planet in what is prob-
ably our most physically realistic model of the growth of
Jupiter, Run 3lRHJ.

Within the five individual groups, all of the runs use
the same computations for the initial phases of planet
growth. Properties of the planet at milestone times dur-
ing the early (thermally-regulated) phases of its growth
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TABLE 2
Results: Phases I and II

10L∞/1G 1s/1sG 1xsG 2 3

First
Luminosity
Peak

Timea 0.348 0.348 0.352 0.345 0.349
MZ

b 7.98 8.04 8.15 8.06 8.35
MXY

b 0.014 0.011 0.0093 0.013 0.014

ṀZ 8.8× 10−5 8.8× 10−5 8.5× 10−5 8.8× 10−5 8.5× 10−5

logLd -5.05 -5.05 -5.06 -5.05 -5.05
Rp

e 41.53 25.56 10.51 29.08 29.62

End of
Phase I

Timea 0.429 0.429 0.436 0.427 0.426
MZ

b 11.49 11.47 11.47 11.49 11.48
MXY

b 0.32 0.29 0.27 0.32 0.30

ṀZ
c 8.9× 10−6 8.7× 10−6 7.7× 10−6 8.5× 10−6 8.8× 10−6

logLd -5.90 -5.91 -5.95 -5.92 -5.90
Rp

e 56.78 31.34 14.23 34.90 36.24

Mid
Phase II

Timea 1.59 1.69 1.86 1.61 1.63
MZ

b 14.0 14.0 14.0 14.0 14.0
MXY

b 7.0 7.0 7.0 7.0 7.0

ṀZ 2.2× 10−6 2.0× 10−6 1.8× 10−6 2.2× 10−6 2.1× 10−6

ṀXY
c 7.8× 10−6 7.3× 10−6 6.5× 10−6 7.6× 10−6 7.4× 10−6

logLd -6.41 -6.45 -6.49 -6.44 -6.44
Rp

e 90.92 45.23 23.16 49.37 48.49

Crossover
Point

Timea 2.28 2.38 2.59 2.30 2.32
Mcross

b 16.15 16.16 16.16 16.16 16.16

ṀZ
c 5.0× 10−6 5.4× 10−6 4.7× 10−6 5.4× 10−6 5.4× 10−6

ṀXY
c 2.7× 10−5 2.7× 10−5 2.3× 10−5 2.7× 10−5 2.7× 10−5

logLd -6.07 -6.08 -6.09 -6.07 -6.07
Rp

e 125.8 56.60 31.30 60.03 59.72

Bifurcation Timea 2.367 2.488 N/A 2.446 2.437

a Time is in units of millions of years, Myr.
b Mass is in units of Earth’s mass, M⊕.
c The accretion rate is in units of Earth masses per year, M⊕/yr.
d Luminosity is in units of solar luminosity, L�.
e Radius is in units of Jupiter’s present equatorial radius, RJ .

(denoted Phase I and Phase II) for all of the simulations
are presented in Table 2. Note that for this epoch, only
five simulations are required, and one of these is taken
from the 10L∞ run of HBL05. Table 2 also lists the “bi-
furcation” time, defined as the time at which the runs
began to differ due to the differing assumptions regard-
ing supply of gas to the planet. (The Run 1xsG has
no bifurcation time because it was the only hypothesis
considered within its group.) Analogous information for
each of the runs at later times (at the onset of hydrody-
namic limits to accretion, at maximum luminosity, and
at the termination of accretion; Phase III) is displayed
in Tables 3 and 4.

Let us first examine the values for the quantities that
were key findings of previous simulations (PHBLPG96;
BHL00; HBL05). These studies focused on the time re-
quired for the growth of the planet and the ultimate
amount of condensable material in the planet. The
crossover mass is almost identical in all of our present

runs (Table 2, Fig. 4), as expected since in our formula-
tion the crossover mass depends almost entirely on the
surface density of solids, the mass of the star and the
distance of the planet from the star (see Eqs. 14 and
18 of PHBLPG96). The value that we find for MZ at
crossover, 16 M⊕, is consistent with recent calculations of
the mass of Jupiter’s core based upon Galileo data (Mil-
itzer et al. 2008); however other models yield smaller
or no cores (Saumon and Guillot 2004). The time at
which crossover is reached is about 105 years later in
Run 1s/1sG than in 10L∞/1G as a result of the smaller
planet size (and thus smaller radiating area, Table 2);
note that the planet’s size is reduced by a larger factor
late in the growth epoch. Crossover time is 3×105 years
later in Run 1xsG than it is in 10L∞/1G, because the size
of the planet is significantly smaller throughout accretion
(Table 2). Thus, reducing the planetary envelope’s outer
radius by a factor of four has a nontrivial affect on the
time that it takes for the planet to reach crossover, but
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TABLE 3
Results: Phase III, Groups 1 & 2

10L∞ 1G 1s 1sG 1xsG 2h 2hJ 2l 2lJ

Onset
of Limited
Gas
Accretion

Timea 2.367 2.367 2.488 2.488 2.710 2.446 2.446
MZ

b 16.62 16.62 16.79 16.79 16.89 17.03 17.03
MXY

b 44.33 59.18 48.43 58.80 60.12 64.18 55.47

ṀXY
c 0.0105 0.277 0.0105 0.277 0.277 0.275 0.0278

Rp
e 182.7 163.2 76.0 52.3 34.3 68.0 72.8

Second
Luminosity
Peak

Timea 2.368 2.368 2.507 2.488 2.710 2.447 2.447 2.451
MXY

b 254.3 215.2 254.2 144.8 180.0 290.7 252.2 123.9
logLd -2.34 -1.47 -2.36 -1.53 -1.48 -1.43 -1.44 -2.78
Rp

e 1.73 2.48 1.80 2.93 2.61 2.02 2.17 2.95

Accretion
Stops

Timea 2.421 2.374 2.541 2.494 2.716 3.00 2.45 3.00 2.60
MZ

b 16.89 16.65 17.10 16.83 16.93 20.36 17.07 20.36 17.96
MXY

b 301.8 302.0 301.5 301.8 301.7 1810.0 301.6 525.0 300.0
Rp

e 1.63 1.76 1.68 1.74 1.68 1.34 1.74 1.57 1.78

a Time is in units of millions of years, Myr.
b Mass is in units of Earth’s mass, M⊕.
c The accretion rate is in units of Earth masses per year, M⊕/yr.
d Luminosity is in units of solar luminosity, L�.
e Radius is in units of Jupiter’s present equatorial radius, RJ .

TABLE 4
Results: Phase III, Groups 3

3h 3hJ 3h4RH 3hRHJ 3l 3lJ 3l4RH 3lRHJ

Onset
of Limited
Gas
Accretion

Timea 2.455 2.454 2.454 2.453 2.453 2.453
MZ

b 16.93 16.92 16.92 16.91 16.91 16.91
MXY

b 56.44 54.01 51.36 39.19 40.86 40.87

ṀXY
c 0.0522 0.0471 0.0459 0.00596 0.00559 0.00582

Rp
e 67.6 79.9 75.0 75.9 75.8 76.0

Second
Luminosity
Peak

Timea 2.461 2.461 2.458 2.457 2.481 2.477 2.480
MXY

b 260.7 258.2 163.4 169.4 130.5 108.3 125.9
logLd -2.07 -2.07 -2.41 -2.49 -3.48 -3.56 -3.51
Rp

e 1.85 1.85 2.56 2.71 2.39 2.99 2.43

Accretion
Stops

Timea 2.998 2.476 2.549 2.517 2.998 2.914 2.825 2.964
MZ

b 20.12 17.05 17.49 17.30 20.18 19.68 19.15 19.98
MXY

b 1072.0 301.6 385.6 301.0 309.1 297.8 244.1 297.6
Rp

e 1.39 1.67 1.66 1.72 1.62 1.64 1.80 1.64

a Time is in units of millions of years, Myr.
b Mass is in units of Earth’s mass, M⊕.
c The accretion rate is in units of Earth masses per year, M⊕/yr.
d Luminosity is in units of solar luminosity, L�.
e Radius is in units of Jupiter’s present equatorial radius, RJ .

accretion rates are not so sensitive to this parameter for
our remaining uncertainty to be significant. Crossover
occurs 8×104 years sooner in Runs 2 than in Runs 1s, im-
plying that the lower disk temperature, which increases
both the accretion radius, RA, and the gas density at
the planet’s outer boundary, has a noticeable but not
large effect on the growth rate. We found that this time
was not very sensitive to gas density in BHL00 (compare
Runs P1 and P2, wherein gas densities differ by three or-
ders of magnitude), but the sensitivity of the formation

time to size of the planet’s outer envelope boundary has
not been previously studied.

Now let us turn to the growth of the planet at later
times. These results are listed in Tables 3 and 4, and the
masses and radii of the planet at late times are plotted
in Fig. 6 and 7, respectively. In all cases, the planet’s
thermally regulated gas accretion becomes so rapid that
flow from the disk limits the planet’s growth rate ∼ 105

years subsequent to crossover. The gas accretion rate of
a planet with Mp & 50 M⊕ that is well supplied by the
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Fig. 4.— Mass of the giant planet as a function of time for the five runs listed in the color key, all of which use Eq. (2) to specify the
hydrodynamic cap of gas accretion rates. Solid lines denote the mass of the condensible component of the planet, MZ , dotted lines the
H/He component, MXY , and dot dashed lines the planet’s total mass, Mp. The ordinate is truncated at 40 M⊕ in order to show details
of the evolution prior to gas runaway. The bifurcation times for each of the four simulations with multiple endings are denoted by the
diamonds situated just above the abscissa. Apart from small changes in the solid lines at later times and in the very last portions of some
of the dotted lines, the results that are plotted here are applicable to all of the runs listed in Tables 3 and 4.

Fig. 5.— Solid curves: Outer radius of the planet as a function of time for the same five runs whose masses are shown in Fig. 4. The
thicker portions of four curves correspond to times prior to the bifurcation of the runs. The primary differences between the planet’s radius
from one run to another prior to the onset of limited gas accretion are direct consequences of the various prescriptions that were used for
planetary radius (see Table 1). The slight differences in Rp among runs 1sG, 2hJ, and 3hJ result from differences in the growth rates of
these planets (compare with Fig. 4). Dashed curves: The core radius, Rc, as a function of time for the same runs. As in Fig. 4, diamonds
denote bifurcation times.

disk increases so rapidly that, within each of the four
groups that bifurcated, the time at which disk-limited
accretion set in varied by . 2000 years even though the

value of ṀXY at this milestone differed by more than an
order of magnitude in some cases.

In our previous studies, the gas density in the disk



Models of Jupiter’s Growth 11

Fig. 6.— Total mass of the planet is shown at late times for the runs specified. Diamonds denote bifurcation times. Note that the lower
value of the disk viscosity (Runs 2lJ, 3lJ, and 3lRHJ) produces more gradual (and we believe more realistic) termination of accretion for
1 MJ planets.

Fig. 7.— The outer radius of the planet as a function of time at late times, for the same runs whose late-time masses are displayed
in Fig. 6. The radii of these planets change little during the interval 2.5 Myr < t < 3 Myr (not shown in the plot). Diamonds denote
bifurcation times.

remained constant and the ability of a planet to accrete
gas was a non-decreasing function of the planet’s mass,
so we needed to terminate accretion in a highly artificial
manner. While accretion in many of the runs presented
herein was terminated when the planet reached Jupiter’s
mass, in some runs we allowed the planet to accrete until
the gas density in its vicinity dropped to zero after ≤
3 Myr had elapsed.

Runs 2h and 2l were stopped abruptly at 3 Myr, yield-
ing planets of mass 1830 M⊕ (5.76 MJ) and 525 M⊕
(1.65 MJ), respectively. In Runs 3h and 3l, we assumed
that removal of gas by the planet’s accretion does not af-
fect the gas surface density of the solar nebula in which
the planet is embedded. As a result, planets of mass
1092 M⊕ (3.44 MJ) and 324 M⊕ (1.02 MJ) form by the
time that the prescribed gas surface density of the neb-
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Fig. 8.— The planet’s luminosity as a function of time is shown for all of the runs which resulted in planets of mass equal to that of
Jupiter. Diamonds denote bifurcation times. Top: The companion to Figs. 4 and 5, shows data from five pre-bifurcation runs as thick
solid lines and post-bifurcation results from selected cases in high viscosity disks as narrow lines. Bottom: The companion to Figs. 6 and
7, shows the post-bifurcation luminosity of nine runs that produce planets of mass 1 MJ . Note in all cases the steep increase in luminosity
as the rate of gas accretion accelerates after crossover; this is a real physical consequence of the core nucleated accretion model of giant
planet formation. The value at which luminosity peaks depends upon the planetary mass at which disk hydrodynamics begins to limit the
rate of mass accretion, and thus on the viscosity and surface density of the disk in the vicinity of the planet. Those simulations in which
accretion of gas is tapered off exhibit a corresponding taper in luminosity; the curve for run 3lRHJ is probably most realistic, as this run
has the most plausible treatment of the tail off in gas accretion.

ula dropped to zero at 3 Myr.
In half of the runs in group 3 (those whose designa-

tion includes “RH”), the surface density of gas in the
planet’s accretion zone drops as gas is accreted by the
planet. During most of the formation epoch, the planet’s
accretion rate of gas is smaller than the removal of gas
from its feeding zone by the overall depletion of our pro-

toplanetary disk. Thus, planetary removal of gas in
Runs 3h4RH and 3hRHJ does not affect the planet’s
growth in our algorithm during this interval. Indeed,
for the first 2.437 Myr, one numerical calculation suffices
to follow all eight runs in group 3. However, when the
planet begins to rapidly accrete gas, the surface density
of gas within the planet’s feeding zone drops rapidly, de-
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Fig. 9.— Integrated luminosity (i.e., total energy radiated) of the planet from the start of the simulation is shown as a function of time
for the runs which produced Jupiter mass planets. Most of the energy is emitted during the epoch when the planet accretes the bulk of its
gas. This epoch is very similar (albeit displaced somewhat in time) for runs 1G, 1sG, 1xsG and 2hJ, so the total energy radiated in these
runs is almost the same. Accretion of gas near the luminosity peak is slower in the group 3 runs because the surface density is lower (and,
in some cases, the viscosity is also lower); this allows the planet to radiate more energy. Diamonds denote bifurcation times.

Fig. 10.— The effective temperature of the planet during and subsequent to the late phases of accretion for the runs indicated. Note
that in the most realistic runs, for which accretion tapers off gradually, the planet has a lower peak temperature, but it remains quite warm
for longer periods of time. The diamonds near the top left denote the bifurcation times.

spite the addition of gas via the expansion of the feeding
zone. This leads to a decline in ṀXY . Eventually, the
accretion of gas by the planet becomes so small that the
rate of decrease in gas surface density in the planet’s
accretion zone is less than the prescribed overall linear
decline rate. At this point, we switch back to the linear

drop-off (i.e., ṀXY within the feeding zone being given
by the derivative of Eq. (4) multiplied by the area of the
feeding zone, plus a small addition of gas as a result of
feeding zone expansion into regions of the disk that have
not been depleted of gas via the planet’s accretion). The
run ends when the gas density in the feeding zone drops
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to zero. In Run 3h4RH, the planet grows to 403 M⊕
(1.27 MJ) in 2.549 Myr and in Run 3l4RH the planet
reaches 263 M⊕ (0.83 MJ) in 2.825 Myr. In Run 3hRHJ,
we reduce the size of the gas accretion zone to 3.2RH so
that the planet runs out of gas when its mass is ∼ 1 MJ .
Likewise, in Run 3lRHJ we increase the size of the zone
to 11RH to give the same final mass.

The planet radiates away much of the gravitational
energy released by accretion and contraction, and there-
fore it is quite luminous during most of the accretionary
epoch. The planet’s luminosity throughout its growth is
shown in Fig. 8 (top) for five cases which use the high vis-
cosity disk formula to specify the hydrodynamic limit to
gas accretion and which end with a Jupiter-mass planet.
Peak luminosity values (see also Tables 3 and 4) are very
similar for all of these runs apart from 3hJ, which has
a smaller peak because the surface density of gas of the
disk is much lower during the late stages of planetary
accretion. Figure 8 (bottom) displays the planet’s lu-
minosity after bifurcation for selected runs that ended
with a 1 MJ planet. The luminosity peak in run 1G is
higher but narrower than in 10L∞ because the specified
hydrodynamic limit to accretion is larger. Likewise, the
luminosity peaks for the 3h runs are higher and narrower
than those of the 3l runs because of more rapid gas accre-
tion. Slower accretion is also responsible for the slightly
lower luminosity peaks for the ‘RH’ runs compared to the
runs with the same viscosity that do not account for disk
depletion resulting from planetary accretion.

Note that the peak luminosity can be very high, up
to 10−1.5 L� in Run 1G, but the width of the peak is
very short in runs where the peak is high. During the
planet’s high luminosity phase, it heats the gas in its
neighborhood of the circumstellar disk. However, as hy-
drodynamic factors (rather than thermal ones) limit the
planet’s accretion at this epoch, ṀXY should not be sig-
nificantly reduced. The total energy liberated during the
rapid gas accretion phase is about the same in all cases
(Fig. 9), so in Run 3lRHJ, for example, the peak lumi-
nosity is 10−3.5 L�, but the phase lasts for almost 4×105

years.
The integrated luminosity of the planet up to the time

of crossover in every case is ∼ 1041 ergs. The integrated
luminosity for the entire accretionary epoch for all cases
that produce a 1 MJ planet is 3 – 4 × 1042 ergs, with
most of this being radiated during the (in some cases
very) brief accretionary spike. The final gravitational
potential energy of each of these 1 MJ planets is close
to −1.5× 1043 ergs. The integrated luminosity is signif-
icantly less than half the absolute value of the gravita-
tional potential energy because dissociation of hydrogen
absorbs a substantial amount of energy; the virial theo-
rem for self-gravitating bodies is not violated.

The effective temperature of a forming Jupiter-like
planet is of interest to observers searching from ther-
mal radiation of such objects. We show Teff ≡
[L/(4πR2

pσrad)]1/4 for several cases in Figure 10.

5. IMPLICATIONS FOR CAPTURE OF
IRREGULAR SATELLITES

The irregular satellites of the giant planets are clearly
captured objects (e.g., Peale 2007). The semimajor axes
of the orbits of all but 2 of the 54 known jovian irreg-

ular satellites are between 150 and 350 RJ ; the orbital
periods of these objects range from 8 months to a little
over 2 years. An object approaching from heliocentric or-
bit has positive energy with respect to Jupiter (i.e., the
magnitude of their kinetic energy exceeds that of their
gravitational binding energy to Jupiter). Three-body ef-
fects caused by the combined perturbations of the Sun
and Jupiter near the boundary of Jupiter’s Hill sphere
can reverse this balance, leading to temporary capture
into jovocentric orbit (e.g., Kary and Dones 1996). Per-
manent capture requires that a non-conservative process
acts while the body is in the vicinity of Jupiter.

Addition of mass to Jupiter increases the depth of the
planet’s gravitational potential well. Jupiter’s Hill sphere
expands (see Eq. 1), and orbiting objects conserve an-
gular momentum as the planet accretes additional ma-
terial. Assuming that the orbital period of a moon is
short compared to the timescale of the increase of the
planet’s mass, eccentricity is conserved and the semima-
jor axis of the orbit goes as M−1

p . Objects captured
when Jupiter was significantly less massive than it is
today thus would orbit well within the current planet’s
Hill sphere, because their immediate post-capture orbits
would have been within the smaller Hill sphere of the
growing planet and the orbits would have shrunk during
Jupiter’s later accretion of matter. (Exceptions would be
objects captured into distant quasi-satellite orbits which
fortuitously crossed the narrow bridge in phase space
connecting them with retrograde orbits as the planet
grew and those whose orbits were altered by collisions,
etc.)

No proposed mechanism for capture of small satellites
by giant planets is fully satisfactory (Jewitt and Haghigh-
ipour 2007). The viability of two of the leading theories
for the capture of irregular satellites (apart from Nep-
tune’s anomalous large irregular moon, Triton) can be as-
sessed within the framework of our model of giant planet
growth. These capture theories involve: (i) reduction of
kinetic energy via gas drag within primordial circumplan-
etary envelopes shortly before these envelopes collapsed
(Pollack et al. 1979); and (ii) increase in the magnitude
of the gravitational potential energy via rapid mass ac-
cretion by Jupiter (Heppenheimer and Porco 1977).

Pollack et al. (1979) used Bodenheimer’s (1977) model
of the evolution of giant planet envelopes. According to
Bodenheimer’s model, Jupiter collapsed hydrodynami-
cally from a size of ∼ 225 RJ to ∼ 30 RJ on a timescale
of ∼ 1–2 years, and this process occurred after the planet
had reached its present mass, 1 MJ . Planetesimals enter-
ing the envelope shortly before this collapse could have
lost enough kinetic energy via gas drag to be captured,
but not so much as to spiral too deeply into the planet’s
gravitational potential well. Our present model of giant
planet formation differs substantially from that prevail-
ing three decades ago, and we show below that capture
of the observed irregular satellites by gas drag in the ex-
tended envelope of proto-Jupiter is not consistent with
the planet growth simulations presented in Section 4.

The giant planet formation models presented herein
have three major differences from those of Bodenheimer
(1977) that make irregular satellite capture in the ex-
tended and thermally-supported envelope phase difficult.
Firstly, the envelope collapses gradually, over a timescale
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Fig. 11.— The final orbital distance that a test particle orbiting at the outer boundary of the planet at the time specified would have
at the end of the accretion epoch if the only orbit-altering effect was shrinkage to conserve orbital angular momentum as the planet grew
to a mass of 1 MJ . Top: Late Phase II and Phase III for each of the five groups, with two variants shown for three of the four groups that
bifurcated. Apart from Runs 10L∞ and 1G, which we view to be among the least realistic runs of this paper (because of the large assumed
size of the planet and high disk viscosity), the peak value is . 20 RJ . Note that all of the curves end at values of ∼ 1.7 RJ , because in our
model 1 MJ planets are about this radius at the termination of accretion (Tables 3 and 4). Bottom: Close-up values near the peak for the
four most physically realistic runs presented in this paper. The characteristic shrinking times range from a few hundred to a few thousand
years.

of a few centuries to a few millennia for cases (Fig. 11,
bottom) in which the most realistic assumptions of the
rate that the disk supplies gas to the planet are made
(and over decades in some of the less physically plausible
runs) rather than hydrodynamically; this makes survival
of captured satellites against spiraling into the planet
questionable. Secondly, the planet’s envelope collapses
when the planet’s mass is only about 0.25 MJ (Tables 3

and 4); so orbits of bound bodies would shrink sub-
stantially due to the continued accretion of mass by the
planet. Thirdly the size of the planet’s envelope prior
to collapse is only . 80 RJ for all runs that use the pre-
scription for planet radius given by the hydrodynamic
simulations presented in Section 2.

The latter two differences imply that satellites cap-
tured during Jupiter’s extended and thermally-supported



16 Lissauer, Hubickyj, D’Angelo, & Bodenheimer

envelope phase would orbit far closer to the planets than
do the observed irregulars. The maximum size of the en-
velope (which is the size prior to collapse) is smaller than
calculated by Bodenheimer (1977) both because the en-
velope collapses at smaller planetary mass and because
in our new models the envelope is restricted by gas flow
in the protoplanetary disk to a region only ∼ 1/4th as
large as that of their Hill radius (Fig. 1 and 2). We plot
in Fig. 11 the temporal evolution of a ‘scaled radius’,
Rp ≡ RpMp/MJ , which is the post-accretion perijove
distance of a body on an orbit just tangent to the outer
radius of the protoplanet at the time in question6. The
value of Rp peaks below 50 RJ in all of our runs and
below 20 RJ in the most realistic runs (Fig. 11, bottom).

The simulations of the growth of Jupiter presented
herein are thus inconsistent with the model of capture
of Jupiter’s irregular satellites within proto-Jupiter’s dis-
tended and thermally-supported envelope. Our calcula-
tions do not address (and therefore do not exclude) the
possibility that the irregular satellites were captured as a
result of gas drag within a circumjovian disk. Addition-
ally, the accretion timescale during the epoch when the
planet accumulates the bulk of its mass is short compared
to the planet’s overall growth time, yet too long com-
pared to trapping times for temporary capture of parti-
cles by Jupiter for the Heppenheimer and Porco (1977)
model to be viable.

6. SUMMARY AND CONCLUSIONS
We have modeled the growth of Jupiter incorporat-

ing both thermal and hydrodynamic constraints on its
accretion of gas from the circumsolar disk. Our study
included simulations of planets growing in disks of high
and low viscosity; the surface mass density of gas within
the disk remained constant in some cases and decreased
gradually in others (see Table 1 for details). The most
physically plausible model of the formation of Jupiter in-
cluded herein is Run 3lRHJ, in which the dimensionless
disk viscosity is α = 4 × 10−4 and the surface density
of the gas within the disk decreases with time, thereby
allowing a gradual tapering off of gas accretion as the
planet approaches its ultimate mass. Results of this sim-
ulation are presented in Figure 12.

The principal results of our investigation are: (1) Three
dimensional hydrodynamic calculations show that the
flow of gas in the circumsolar disk limits the region occu-
pied by the planet’s tenuous gaseous envelope to within
∼ 0.25RH (Hill sphere radii) of the planet’s center, which
is much smaller than the value of ∼ 1RH that was as-
sumed in previous studies. (2) This smaller size of the
planet’s envelope increases the planet’s accretion time,
but only by ∼ 5–10%. In general, in agreement with pre-
vious results (HBL05), Jupiter formation times are in the
range 2.5–3 Myr, assuming a protoplanetary disk with
solid surface density of 10 g cm−2 and dust opacity in the
protoplanet’s envelope equal to 2% that of interstellar
material. (3) In a protoplanetary disk whose dimension-

6 This assumes that the accreting gas does not collide with the
satellites, leading to gas drag and further shrinking satellite orbits,
and that accretion is slow compared to the orbital period of the
satellites. The most rapid rate of increase in Jupiter’s mass de-
pends upon the viscosity in the surrounding protoplanetary disk
(Fig. 3 and Table 3). For the more viscous case that we studied,
the planet’s mass increases at up to ∼ 0.3% per year.

Fig. 12.— The temporal evolution of the planet according to
our most physically realistic case, Run 3lRHJ (see Tables 1, 2, and
4 for details). Top: The mass of solids in the planet (solid line),
gas in the planet (dotted line) and the total mass of the planet
(dot-dashed line) are shown as functions of time. Note the slow,
gradually increasing, buildup of gas, leading to a rapid growth
spurt, followed by a slow tail off in accretion. Middle: The radius
of the planet (solid line) and that of the planet’s heavy element core
(dashed line) are shown as functions of time. Note the logarithmic
scale used for radius. Bottom: The planet’s luminosity is shown as
a function of time. The rapid contraction of the planet just before
t = 2.5 Myr coincides with its highest luminosity and the epoch of
most rapid gas accretion.
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less viscosity parameter α ∼ 4×10−3, giant planets grow
to several times the mass of Jupiter unless the disk has a
small local surface density when the planet begins to ac-
crete gas hydrodynamically, or the disk is dispersed very
soon thereafter. The large number of planets known with
masses near Jupiter compared with the smaller number
of substantially more massive planets (Udry and Santos
2007) is more naturally explained by planetary growth
within circumstellar disks whose dimensionless viscosity
parameter is α ∼ 4×10−4. (4) Capture of Jupiter’s irreg-
ular satellites within the planet’s diffuse and distended
thermally-supported envelope is not consistent with the
Jupiter formation models presented herein.
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