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Calculating free energies using average force
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A new, general formula that connects the derivatives of the free energy along the selected,
generalized coordinates of the system with the instantaneous force acting on these coordinates is
derived. The instantaneous force is defined as the force acting on the coordinate of interest so that
when it is subtracted from the equations of motion the acceleration along this coordinate is zero. The
formula applies to simulations in which the selected coordinates are either unconstrained or
constrained to fixed values. It is shown that in the latter case the formula reduces to the expression
previously derived by den Otter and Bri¢lglol. Phys.98, 773 (2000]. If simulations are carried

out without constraining the coordinates of interest, the formula leads to a new method for
calculating the free energy changes along these coordinates. This method is tested in two
examples — rotation around the C—C bond of 1,2-dichloroethane immersed in water and transfer of
fluoromethane across the water-hexane interface. The calculated free energies are compared with
those obtained by two commonly used methods. One of them relies on determining the probability
density function of finding the system at different values of the selected coordinate and the other
requires calculating the average force at discrete locations along this coordinate in a series of
constrained simulations. The free energies calculated by these three methods are in excellent
agreement. The relative advantages of each method are discuss@0lCAmerican Institute of
Physics. [DOI: 10.1063/1.1410978

I. INTRODUCTION coordinates. This leads to the interpretation of the free en-
ergy changes along the chosen coordinates as the potential of
Many molecular dynamics computer simulations of mean force exerted by other coordinates. Only a few meth-
chemically and biologically interesting systems are devoteads for calculating this potential can be conveniently, effi-
to calculating free energy changes along selected degrees ¢iently and generally combined with computer simulations.
freedom. In some instances, the full free energy profile is oOne such class of methods relies on obtaining the probability
interest. For example, nonmonotonic changes in the free emensity function,P(¢4, ... .£p), of finding the system at
ergy of two small, hydrophobic species in water as a functiorvaluesé, , . . . &, of the p selected generalized coordinates.
of their separation, observed in computer simulatibheg-  Once this probability density function is estimated with sat-
flect the changing patterns of hydrophobic hydration andsfactory accuracy the potential of mean force,

provide important tests of analytical theories of hydrophobicA(&,, . . . &), can be readily calculated as
interactions’ Free energy maps of small peptide units in
vacuum and in water shed light on conformational prefer-  A(¢q, ....&p)=—KkgT log P(&;, ... &), (D)

ences of the protein backbofie.The free energy profiles
associated with the transfer of solutes through waterwhereT is temperature anllg is the Boltzmann constant.
membrane systems yield solute distributions and permeation Several extensions to this generic method can markedly
rates across membrare$. In other instances, calculations improve its efficiency and accuracy. In particular, the Hamil-
of free energy profiles provide a means of estimating the fre¢onian of the system can be augmented by a biasing poten-
energy difference between the end-points which, in turntial, U(§,, ...,&p), chosen such that sampling of phase
yields the relative stabilities of the corresponding states obpace in the selected dimensions becomes more unifétm.
the system. Determinations of conformational equilibria inThe efficiency can be further improved by dividing the hy-
flexible molecules and association constants between mgersurface defined by theselected coordinates into a set of
lecular species are among important applications of sucbverlapping windows and performing separate simulation in
calculations’™*2 each window. This technique is advantageous even if there is
The free energy changes along the chosen generalizetb need to apply a biasing potenttaiThe probability den-
coordinates can be calculated from molecular simulations bgity functions obtained for different windows and different
a variety of technique$*° Most (but not alt®'% of them  biasing potentials can be self-consistently converted into the
require that a sufficient, thermally representative sample ofinbiased potential of mean force for the full range of
states of the system is generated at different values of thedg, . .. ,&,.2%*
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Another, general method for calculating the potential ofthan for constrained simulations. However, as will be shown
mean force requires calculating the derivativdsyd¢ in a  below, it converges to the den Otter—Briels formula at the
series of calculations, in whicfj is kept constrained to fixed appropriate limits. The value of the new formula is not only
values distributed alonfg™",£"] in the range of interest. in providing another route to calculating the potential of
Then, the potential of mean force is recovered by numericainean force but also in clarifying the relationship between the
integration. The derivative of the free energy is related to theéhermodynamic force and the force of constraint. By doing
constraint force needed to keep the system at the fixed valug® it forms the theoretical basis for highly efficient methods
of & . The exact nature of this relationship was a subject ofo calculate the potential of mean force and to investigate
some debat®2° Several initial suggestions were found to rare events’
be valid only under special circumstanéds** Only re- In the next section we derive the formula foA/d¢; .
cently, the generally valid and practical to use formula wasThis is done in two steps. First, the expressiondardé; in
derived for one-dimensioral?’28 and multi-dimensiondf  unconstrained simulations of a Hamiltonian system is ob-
cases. In this paper, this formula is derived in the generaiained. Then, this expression is generalized so that it applies
context of multi-dimensional reaction coordinates for con-when the system is only approximately Hamiltonian, as is
strained and unconstrained simulations. All previous derivathe case in adiabatic approximation. Then we consider two
tions were done in the case of constrained simulations onlylumerical examples — rotation around the C—C bond of
This formula requires that the constraint force is corrected byl,2-dichloroethane immersed in water and transfer of fluo-
geometric factors that depend ép, . . . ,£, but not on other romethane across the water-hexane interface. These ex-
(usually difficult to defing generalized coordinates. Since amples involve only a single reaction coordinate. Applica-
the constraint force can be readily calculated in computefions to multidimensional cases will be considered
simulations(e.g., using thesHAKe?® or RATTLE algorithmg ~ separately. We close the paper with discussion of the new
practical applications of this method are quite feasible. method in comparison to its alternatives. The details of how

Compared to the probability density method, the methodhe method is applied in practice are given in one of the
of the constraint force has several advantages. In particular, Appendices.
does not require a good guess of the biasing potential to
achieve efficient sampling of;, . .. ,§,. Providing such a
guess could be a difficult task, especially for qualitatively|, THEORY
new problems. Further, data analysis is markedly simpler; no . i
procedure for matching results obtained for overlapping win/\- G€neralized coordinates
dows is required. However, the constraint force method also  We assume that we have a set Mfparticles and we
suffers from several disadvantages. It may be inaccurate afenote byN the total number of degrees of freedom of our
inefficient if the potential of mean force is a quickly chang- system N=3M). We further assume that there exists a

ing function of¢,, ... .,§,. In complex cases, involving for Hamiltonian,H, for this system:

example insertion of a peptide into a membrane or induced 2

fit of an inhibitor into an enzyme, preparation of the system H(x Xy, P Pn) = 1 Z p_‘+q)(x Xy)
1y = = = ANM1 1MN 2 ) 13+« « AN/

at consecutive, fixed values of the selected degrees of free- i m
dom may be difficult, and subsequent equilibration of the
. . . dXi JH
system may be slow. In some instances, application of the — -
constraint force method may lead to quasi nonergodic behav- dt  Jp;
ior. Finally, information about the dynamic behavior of the dp, 9H

system, which also may be of interest in a simulation, is not —-=—

: . i dt &Xi ’
available in this approach.

In this paper, we propose an alternative and equally gerwhere &, ... x,) are Cartesian coordinateg), . . . ,pp)
eral approach to calculating the potential of mean forceare the conjugated momenth,is the potential andlis time.
which combines several desired features of both methods. As We suppose that a set Nf—p functions @, - . . .On-p)
in the constraint force method, the potential of mean force isan be defined such thagy, . .. ,§,,ds1, - .. .On-p) forms a
obtained by integrating its derivative. This derivative, how-complete set of generalized coordinates. By definition, the
ever, is calculated from unconstrained rather than conCartesian coordinates(, ... xy) can be written as func-
strained simulations. The centerpiece of our method is a newions of & ,q; :
general formula that connecé#g\/ 9¢; with the instantaneous Xe(£1r ol - - - AN p)

force acting oré; . This force is acting along the gradient of

&, such that if subtracted from the equations of motion the

acceleration of¢; is zero. This instantaneous force can be

also related to the forces of constraint in a constrained simu-  XN(§1+ -+ ++&p. A1, - - On-p).

lation. Then, the forces of constraint are applied to maintain ~ We will often denote byx the vector &4, ... Xy) and

& at a constant value and the force acting&nis exactly  similarly for &, g, p; andpg.

equal to the opposite of these forces of constraint. The derivative with respect t§ is defined as the deriva-
The formula that relategA/d¢; to the instantaneous tive computed withg;, j#i andq,, k=1,... N—p con-

force acting oné; is different for unconstrained simulations stant. Using Definition in Eq(1) of A we can write
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(?P ml O
(9A é’fl 0 mo
The probability densityP for a canonical ensemble can N 1 1Y

be written as a function of the Hamiltonidh of the system: ) )
Matrix Z can be written as

1
Zee Zq)
dpno(€,—€7) ... 8(€p— §p)exl{ " T) whereZ; is apX p matrix defined by
3 detN 1 g 9% 9
9 [Zelij= 2 & % 5

where\ is a normalization factor. =) my Xy X’
We introduce additional notations to express the Hamil-
tonianH as a function of the generalized coordinates.
The Jacobian], of the transformation from Cartesian to

generalized coordinates is defined as

qu is a pX(N—p) matrix, qu—qu andZ, is a (N—p)
X (N—p) matrix.
The inverse oZ is denoted byA:

A A
= i Al e Do)
Xy T axy Age  Aqg
. Using generalized coordinates, the Hamiltonian of the
system takes the form
7%, % ’
Jdef X, o IXN ( Jg) @ H(faqvpg ) pq) = %pgz§p§+ %paquq+ ptgzgqpq
A | W) +®(£,0), ()
! PN wherep; andpy, are the transpose of vectops andp,,.
. e Inserting the expression fd&? from Eq. (3) into (2), we
JAN-p In-p obtain:
axg Xy dH r{ H )
dq dp, dps==ex
whereJ; are the firsp lines andJ are the remaining lines. A [da dp, Pey & KgT 7
The inverse of] is denoted byl ~1. We define matrixZ as (9_&_ da dn. d F< H ) @)
ex
o Jdq dp, dpg KT
zZ=JIM"1J,

with a change of variables from Cartesian coordinates to
where J! is the transpose of matrid and M is the mass generalized coordinates. For all functiéip we define the
matrix: statistical average dF at fixed¢* =(¢7, ... &) as

H
j dXy ...dxy dpy...dpyo(E1—E&7).. .5(§p—§§)exr< _kB_T)F(Xl' CeXN)

<F>§* = H
Jdxg ... dxy dpy ... dpNS(€— 7). .. 8(&p— fp)ex% K T)
H 1
Jdqg dp, dpgex;{ kT)
|

where in the last equatiof= £*. We these notations we can JH 1 az§ 1,07,  0Zgq ob
rewrite Eq.(7) as 9E 7 P: 7E —= Pet qu 7E) Ipg+ Pe—s 7Z) Pt IE 9

dA | oH

==\ - €S)

& |\ 9§ o .

4 After substituting Eq.(9) in Eg. (8), we need to
By differentiating both sides of Ed6) we obtain compute
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f do. d F{ H def
Pq dp; €xp — i — Vi=—, (13
kgT boox!
def
1 ,0Z; 1 ,9Z, . 0Zq ,_ P
2P g, Pet 2Pagg, PaPi g, Pal: i
We show in Appendix E that for a givegr, it is pos- deff  g2¢ 1 P
sible to choose the basigsuch that = L= ! ) , (15
(9Xi,(9X]-/ \/mimj IX; 0"X]

qu(g*!q)zoa Vq (10)

With this choice ofq, for £&=£*, the function exptH/kgT)
is an even function op, andp, and thus

whereH, represents the modified Hessian&f
The symbol- denotes a dot product or a matrix-vector
product, depending on the context.

H | | 0Z We start from the equation for the time evolutionp%[:
f dpg dp; ex T pfa_g-pqzo'
B : dpg oH
Using the result from Appendix A, we obtain for the follow- TR (16)
ing integral: '
H\(1 a2 1 iz, The momentum vectao, is defined as the derivative of
dpy dp exp{ )( p! Pt p p ) the LagrangianC with respect to¢. Since the Lagrangiad
f e keT g(gf ¢ 408 ™ is defined as
kgT H L\t :
5l G an oo o i THANE
L=3|dq] -A-| dgq|—P(£q)
The trace on*l(aZ/agi) can be computed using the at at
result from Appendix B:
the momentunp, is equal to
kBTT - 92 y d log|J|
2 9] B 9¢ deloL dé dq
Pe= % =Aegy T Ay an
and thus 35
VA=(VD+kgTV, Iog|J|)§. (11 In Eq. (17), p; is a vector. Considering one coordinate
: . . pg we obtain
The notationV ;A denotes a vector witp coordinates: i
d¢; day
al Pe=2 [Addi o + 2 [l - (18)
i dt K dt
Z3 !
VA=| i |. We can differentiate both sides of E@.8) with respect
IA tot and use Eq(16) to obtain an expression faH/d¢;. As
- the right-hand side of Eq18) is the sum of two products, its
9&p derivative contains four terms:
The derivative of the free energy can be seen as resultmgH pg

from two contributions: the mechanical forces acting algng
and the variations of the volume element associated with théé
generalized coordinates. This formula has been previously

d[A:]; d d?
2 [ f]J gJ E[ §]|J 62]

derived in many paper$:*2and is also given by Smit and 5 WAl ko ]
Frenkel®® Zk dt Z LA §q]'k (19
SinceAZ=1 by definition, we have

B. Thermodynamics force AZe+AwZoe=1, 20)
Equation(8) explicitly depends on the choice of all gen-

eralized coordinates, including. As this is not practical A§Z§q+A§qZ =0. (21)

equation to obtain an expression mdependent of the choice ¢f ).

g. This is done by integrating analytically as many terms as

possible in Eq(8). A=, (22)
We start by simplifying the notations. We will now de- _

e y simplifying AcgZq=0 (23)

The matrice<Z, andZ, are invertible. Therefore,

X{ =, (12) Ac=Z, 24
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qu: 0.

The last term in Eq(19) is thus equal to zero.

Calculating free energies using average force 9173

In the last equation, we have split the right-hand side
into odd and even functions @f; andp,. We want to com-
pute

(29

The derivative ofA, can be calculated by differentiating

Eq. (20): H | oH
f dpq dp; exp{ T kaT) 98
_dzZe dA dz,. dAgq BI T
0=Acgqy gt 26T Aaaqp T qr Zae Because we chose a basjssuch that Eq(10) is true, the
function exp(- H/kgT) is even inp, and p,. Therefore in
It leads to Eqg. (31), all odd terms inp; and p, cancel whereas even
terms contribute. The only contribution comes from qua-
dA§ —1dZ§ -1 drati ; .
TR sz , (26) ratic terms inp;:
1 z g] k 3’
whereA, has been replaced kK./§ thanks _to Eq(24). _ 2 [Z; ]” ,l [J g]rlpg,ng-
We now computel Z,/dt using the chain rule of deriva- jKIr X
tion:
Using Eq.(Al) from Appendix A, we compute the inte-
dZ; < dZgdx dZ; ) gral overp; andpyq:
qA At e P @) .
_ptfzfpf [Z,]
We insert Eqg. 27 into Eq. 26: _ 2 J Zf ik
f dpg dp; exp KeT % o [Je]nipe P,
dA§ 1 (925 ’ -1
CaA Pl 20,
kTS 25k, 7,7, [ dpg dp
Next, we insert the last equation into Eq. 19:
92 1 ptZ p
g, iZy 2 PetePe
agl——E[ Tige T2 (20| P e XeXPT T

ik
d[Agqlix dak
dt -

-2

K dt

We multiply the previous equation kzlgl to obtain
(28)

E [Z; ]ij{_,'p;(l Pe,
We now focus on the second term on the right-hand sid ik X ik ¢
of this equation. Using the definition of. andp, as deriva-

tives of the Lagrangian with respect fandq, py can be

expressed in terms qf, andpy:

Pe
r_ J/t ;
pi={ ]

whereJ’ is analogous td in Eq. (4) but the derivatives are

taken with respect ta rather tharx; .
We multiply the previous equation b§Z./dx’:

e !

9z

ox’

We obtain a new expression for the second term on th

right-hand side of Eq(28):

Pe,
ik

74
Z*l - § '
>0z ].,{—&X, Py

] K
gJ [Je]nipe P,

kz [Z¢ ]u

3 (7,72 *’,]Jk

& x| [ é]r-%—p,lpqrpgk-

(? r
—kBT<E [z 4, 1z g]“[ ;1]krﬁf,> . (32)
3

We now prove that the third term on the right-hand side
of Eq. (28) does not contribute 1V H) .. Transformations
similar to the ones done for the second term are performed.

The derivative with respect tbis written as a scalar
product withp, :

d[Agqlix _
dt

(29

N Agqli
ax’

(30

dnserting Eq.(29) into the previous equation,

d[qu]ik t( )
+(J") g

dt
The derivative ofq, can be expressed in terms pf
only since the basig satisfies Eq(10):

d
qk E [Zq]klpqI

As before when integrating oves, and p,, the odd
terms inp; andp, cancel and we obtain

07[A§q]|k

(31)
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1 N L def )
FTET: VA= )\+kBTE| w2 NZeZ g =(FMy,.
&

f dp, d -—
Pq dp; ex KaT
H ) (35

:% f dpq dp; exp( T keT The following equality can be used to simplify the pre-
vious equation:

NAgglix azZ;t=-z;1 92,2
X#[J ]rer,s[Zq]kIpq|pqr 1= ¢ 16 =¢
Xs We insert the last equation into E5)
=> Jd dp; ex A VA= N—kgT, iaz*l-ag (36)
=~ pq p§ kBT & B | ml 1&¢ | g
Al 0 However, the last equation is not as convenient as(&%).
x ——Ladk i[z ] from a computational point of view becausgZ; ' is not
, ;L 4£qlkiPq,Pg,- _ , ¢
IXs X readily available.

Equation (35) has a similar interpretation to Edqll)
although the terms are now different. The first texmis
related to the force acting alorgg which is the opposite of
D I Acalix ﬁZE 1 Al ﬁzo_ the constraint force. The second teBy(1/m)d,Z; - 9& is

s dxg dax{ s Mg IXs X a correction term which accounts for the variation of an in-
finitesimal volume element in generalized coordinates.

We now prove that

The vectors (Ihy)(dq,/dxs, are tangent to the surface
= ¢&* since they satisfy E(10) and therefore are orthogonal C. Decoupled degrees of freedom
to V&, ..., V§,. The function[A ik is equal to zero ev-
erywhere on the surfade= £*. As a consequence, its deriva-
tive along any tangent to the surfaée £*, is zero. In par-
ticular,

It is often desirable to consider a situation wherés
decoupled from the other degrees of freedom. By decoupling
we mean that?£/dt? is not a function of the coordinatep
but instead is governed by some other equation of motion. In

Al 1 99, the previous papér, we derived the formula fosA/d¢ that
E Ty M v applies to a single reaction coordinate. In this paper, this

dXs Mg dX _ _ . .
s s s formula is generalized to a multi dimensional case.

We have proved that only the first two terms in E28) One example of decoupling is a constrained simulation
contribute. In matrix notation, inserting E2) in Eq. (28) in which ¢ is constant. In this case=0 andd?¢&/dt?=0. We
we have will see that using Eq(35) we will recover the result from
1 den Otter and Briel8® Our derivation can thus be seen as a
_ ~ -1 -1 generalization of their result.
(VeH)e kBT< E| m, ZeOZe 2y V§> Another choice, which was previously discusseis a

¢ diffusion equation such that the motion éfis random and

_1d2§ approximately adiabatic. The choice of a Langevin equation
T\ S F ' 33 is a convenient one because adiabatic approximation can be
§ achieved simply by varying the diffusion constant.
Deriving the relation fofV /A in the decoupled case re-
quires modifying the probability density qf,. Previously
this density was given by

where we denot@ Z,= dZ;/dx, .
If we denote by\ the vector ofRATTLE Lagrange mul-
tipliers they are by definition such that

1,4t
—iplz
g g )
ZA\= (34) KeT

>
at For a constraint simulatiorf,, becomes a Dirac delta func-
We now summarize what we have obtained so far. Weion at the location of the constraint whereas for the other
have started our derivation from E¢B) which relates the decoupled casd, is a constant function. Thus if we calcu-
derivative ofA with respect tcg; to the average ofH/d¢; . late analytically the integral ovex, in Eq. (35) with f, given
We observed that this expression is not very useful as iby Eg.(37), we will obtain the correction for the decoupled
depends on a particular choice of generalized coordinatesase.
We transformed this expression by analytically integrating  Since the equation for the decoupled case can be used
some terms and we obtained Eg3). This new expression is for an arbitraryf,, it can be seen as a generalization of Eq.
much more useful than the initial of&q. (8)] as it can be  (36). In particular, we will show that in the case bf satis-
computed numerically without any explicit reference to afying Eq. (37) (¢ coupled toq), the correction to E(.36) is
particular choice of generalized coordinates. Finally, by in-equal to zero. Thus, one can implement the equation for the
serting Eq.(34) in the last term of Eq(33), we obtain decoupled casfgEqg. (46)] and use it in all situations.

(37
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By fq we denote

fqzexp( -

We start by calculatingl®¢; /dt?. The first derivative is

dfj ka
at =2 Vg

7PZqPq
kgT ’

If we differentiate again with respect tp

d?¢; dx dVig
F“Ek ViEViP 2 G g (38)
1 It ’
=—Ek Fkvkcpvkg,-erx M- py, (39)

using the definition in Eq(15) of H; .
In Eq. 35, the only term that depends ppis \. As\ is
related tod? & /dt? through Eq.(34), we need to compute

d2
-zt f dpg dpefofi—.
£ Pa @Pelale o
Insertion of Eq.(39) leads to the computation of a sim-
pler quantity:

—Zglfdpq dpg fof (p)" H;- Py -

Again we insert Eq(29) to obtain an expression explic-
itly depending ormp, andpy:

| dpq ap tq fe00 7,

Pe p
Jdpq dpgqug( ) JHAN ‘5).
Pq Pq

The odd contributions ip, andp, cancel and we obtain

f dpg dpgfof (Pt H;- px

:fdpgffpf'JéHJ(Jé)t'péfdquq

+f dquqpq-JéHj(Jé)‘-qu dpgf. (40)

By performing a change of variables wih=Z}'%p, we

can show that

Jdp§f§=f dpgexp(—

where|Z;| is the determinant oZ ;.
The first term on the right-hand side of E40) can be
computed using EqAL) given in the Appendix:

%pg’zfpf) ot (41)

kBT |Z§| 1/2°

Calculating free energies using average force 9175
J dpg fe per IH; (39" g
ﬂgr agk & g]
=k TZ [Z;1] f p; f (42)
® £ Kax axl ox| oxl) e

For the unperturbed Hamiltonian systemy, is sampled
according to

;{kT
ex

To account for a different sampling in the decoupled
case, we need to subtract all the contributionppto F{"
[see Eq(35)] and replace them with the correct contribution
computed for the unperturbed Hamiltonian system. The in-
correct contribution op, to F{M is equal to

0& &
_2 [Zg ]|12 pgk g gk gl

Pe — .
X[ IXg X[ IXS
This is the term that we need to subtract.
The correct contribution is equal to the right hand side of
Eq. (42) multiplied by —Z;*

PeZPe |-

(43)

(7§r &gk ‘7 gj
X[ IXE X[ IXS

“keT2 1210y 2 (2 T (44

Equation(42) shows that the last two term&q. (43
and(44)] are equal in the case @gfcoupled tog (unperturbed
Hamiltonian. Thus the final equation that we obtain, Eq.
(46), is applicable even whefiis coupled tag and it is equal
to Eq. (36) in this particular case.

Adding Eg. (44) and subtracting Eq(43) we have
proved that the correction term is

agr ﬁgk 5' g]
x| XL ax| ax.’

E (2605 2 (PePe,~KaTIZe )

(45

There is a multiplicative factor which is equal to|2/*?

[see Eq(41)].
Adding the correction term from E@45) to Eq.(35) and
multiplying by 1/Z,|*? we have

! —— (A +kgTD) ! F&
1z |1/2 B def |Z§|1/2 £
VA= . - : 3 (46)
<|Z§|1/2>§ < |Z§|1/2>§
whereD is a vector defined by
a2z 65
i~ 2 §, == 2 [Zg |12
Tl X krTs
( PaPs _[ )5_'5 &_gk 0725] 47
kgT “Vax| ax ox| ax.’

The first term is the original term from E¢36). The other
terms are the correction from EG15).
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We now introduce a new notation: H; . Note that’T-[,- is only a function of the first and second
T _o—11ray (1 tr—1 derivatives of¢ with respect to Cartesian coordinates and can
Hi=2, I H(Je) 2 (48) thus be easily computed numerically.

See Eqs(4), (5) and(15) for the definition ofJ;, Z, and In Appendix C, we prove thab, is equal to

dt

_ 1 (dé\' - [dé
23 2 el ] ol

1
+§V'§,—.V'|og|z§|> (49)

[see Eq(A7)].
Inserting the previous equation in E@6), the derivative of the energy can be expressed as

1 1 dé b d¢ kgT ' ’
" <|Z§T/2 A2 17 ]”((H) 'H"'(H)+TV bV '°g|z§|))>

Z3 < 1 >
|Z§|l/2§

From a practical point of view, it is more convenient to (51), Z; is a matrix,|Z,| denotes its determinant andis a
write the second term as vector. This contrasts with the single reaction coordinate

case?>?’
V'10g|1Ze| =Tr(Z; 'V’ Z;)

£ (50)

because the derivative ¢Z,| is not readily available. See
Eq. (13) for the definition ofV'.

In most cases the degrees of freedpf} are not func-
tions of all the Cartesian coordinates but rather a subset of T4 examine the performance of the method based on Eq.
them. For example, a bond angle depends only on the thre@g) we studied two test cases. One example involved cal-
atoms forming the bond and a torsion angle on four atoms. It jating the potential of mean force for the rotation of the
we denoteC the minimal number of Cartesian coordinates c_c pond in 1,2-dichloroethar@®CE) dissolved in water.
needed to comput§, thlen the nzlmeer of floating operations | the second example, the potential of mean force for the
required to comput&(") andF{? is on the order of® for  yransfer of fluoromethan@Met) across the water-hexane in-
each coordinatég; . In Appendix D, we describe step by step ierface was obtained.
the implementation of our method. The first system consisted of a DCE molecule sur-

rounded by 343 water molecules, all placed in a cubic box
whose edge length was 21.73 A. This yielded a water density

D. Constrained simulation approximately equal to 1 g/cin The second system con-
) tained one FMet molecule and a lamella of 486 water mol-

In the particular case of a constraint simulatio 0. ecules in contact with a lamella of 83 hexane molecules. This
Then the first term in the equation fdp; [see Eq.(49)]  system was enclosed in a box, whosg-dimensions were

Ill. NUMERICAL RESULTS

vanishes and we are left with 24 x 24 A? and thez-dimension, perpendicular to the water-
1 hexane interface, was equal to 150 A. Thus, the system con-

D =5 2 [zg—l]ij(vrgj -V'log|Z,]). tained one liquid—liquid interface and two liquid-vapor inter-
! faces. The same geometry was used in a series of previous
The complete formula foF A then reads studies on the transfer of different solutes across the water-

hexane interfacé In both cases, periodic boundary condi-

1 T 4 ) ) tions were applied in the three spatial directions.
|Z,|1/2 AJ“T 2 [Z¢ 15 (V'§-V Iog|Z§|> Water-water interactions were described by the TIP4P
A _ N7 ¢ model®* The models of DCE and FMet were described in
29 1 "~ detail previously®? Water-DCE interactions were defined
|Z,| 22 from the standard combination rul&sAll intermolecular in-
g€l teractions were truncated smoothly with a cubic spline func-

(51) tion between 8.0 and 8.5 A. Cutoff distances were measured
This is the formula obtained by den Otter and Brié€ls. between molecules or neutral groujis DCE oxygen atoms
Note that this formula is applicable to the case of severabf water and carbon atoms of the solutes and hexane served
degrees of freedom. Several authors derived a similar equas molecular or group centers.
tion for a single reaction coordinaté?’ Note that in Eq. The equations of motion were integrated using the ve-
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locity Verlet algorithm wih a 1 fstime step for DCE and 2 fs 6 KT Toq (P) —
) g (P)
time step for FMet. The temperature was kept constant at With constraints -——
300 K using the Martynaet al. implementatiof® of the 5r ‘ Without constraints =
Nose-Hoover algorithm. This algorithm allows for generat-
ing configurations from a canonical ensemble. Bond lengths 47
and bond angles of water molecules were kept fixed using
RATTLE.® 81
For DCE in water, the potential of mean force was cal- 5|

culated along, defined as the GIC—C—Cltorsional angle.
For the transfer of FMet across the water-hexane interface,
was defined as the z component of the distance between the ) _ \
centers of mass of the solute and the hexane lantsihee 0 N, . e
both cases involved only one-dimensional potentials of mean -20 0 20 40 60 80 100 120 140 160 180 200
force we drop the su_bscnpifollowmg §). For eaCh_SyStem’ FIG. 1. The free energy of rotating DCE around the C—C bond computed
three sets of calculations were performed. They yielég) using the probability density method and the methods of the constraint force
using the probability density method and the methods of théom unconstrained and constrained simulations. Orxtheis is the value
constraint force from unconstrained and constrained simulgf the CI-C—C~Clorsional angldin deg. On they-axis is the free energy
tions. (in kcal mor™?).
To obtainA(¢) from the probability density method, a
series of simulations was performed. For DCE, we used a
single window and a biasing potential obtained previodsly. respectively. For DCE, gauche and trans conformations were
The trajectory was 2 ns long. For FMétwas constrained by found to have nearly the same free energy, and were sepa-
a harmonic potential in five overlapping windows. No bias-"ated by a barrier 4.2 kcal/mol high. These results are in
ing potential was applied. For each window, a molecular dy_close agreement_ with thg regéjlts obtained previously using
namics trajectory 2.4 ns long was obtained. From this trajectn€ same potential fupct|oﬁ§'. For FMet, the free energy
tory the probability density,P(¢), was calculated. The between dissolving this molecule in V\_/ater anld'ln hexgne was
probability density in the full range of was constructed by found to be 0.6 kcal mol. An appreciable minimum in the
matching P(¢) in the overlapping regions of consecutive Potential of mean force, approximately 1.4 kcal m’OUeer
windows?® A(¢) was calculated from the complef(¢) was observed_near tr_le mterface_. A very _S|m|Iar profile of
using Eq.(1). A(£) was obtained using the particle insertion metfidd.
Calculations ofdA/d¢é from unconstrained simulations
were very similar. For DCE, we used a biasing potential and
one window. For FMet we did not use a biasing potential andV- DISCUSSION
di\{ided the full range ot into five windows: In these simu- In both numerical examples presented in the previous
lations, however, ther? was no neeql for WInd(_)WS to overlapgaction, the method based on calculating the probability den-
The molecular dynamics trajectory in each window was 1-%ity along¢ and both methods relying on calculating/ &

ns long. In each molecular dynamics step, the force of congie|q the potentials of mean force that are identical to within
straint was calculated usingATTLE. The appropriate geo-

metric corrections required for the calculation @/d¢ in

Eq. (36) were obtained using the algorithm described in the
Appendix. Since no biasing force was applied the average " kTlog (P) ——
force in each bin along was simply the arithmetic average Wit\r%lm constraints |
of the instantaneous forces.

JdAl ¢ was obtained from constrained simulations by
generating a series of trajectories, in whi¢hwas fixed at 1.5 -
several values uniformly spanning the full range of interest.
For DCE, simulations were carried out at 37 values: af 1r
the range between 0 and 180 deg. This corresponds to 5 de
separation between two valueséfFor FMet, & was fixed at 05 L
102 values betweer10.1 A and 10.1 A0.2 A separation
between two valugs The constraints orf were enforced
using RATTLE. The average thermodynamic force was ob-
tained by correcting the calculated constraint force according

. _05 1 1 1 Il Il 1
to Eq. (51). Once calculations oA/ 3¢ were completed _for 20 15  -10 5 0 5 10 15
all discrete values of, A(¢) was obtained by numerical
integration. FIG. 2. The free energy of transferring FMet across the water-hexane inter-

. . . face computed using the probability density method and the methods of the
The potentials of mean force for rotation of DCE in wa- constraint force from unconstrained and constrained simulations. On the

ter a_nd transfer of FMet across the Water'h_exa_ne interfacg.axis is the value of the reaction coordinatéin A). On they-axis is the
obtained from all three methods, are shown in Figs. 1 and Zree energy(in kcal mol?).
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statistical error. This confirms applicability of E@®5) to the  comes nearly uniform, which minimizes statistical error for a
calculation of the potential of mean force in unconstrainedixed length of the simulation. We call this approach the
simulations. Adaptive Force Method. So far, this method has been applied

From the practical point of view the new method is quiteto study internal rotation of DCE in water, and has proven to
similar to the probability density method. During the coursebe very successfdl Other applications will follow.
of a simulation there are only two additional steps involved
1— calculation of instantaneous forces of constraints and
evaluation of the geometric corrections to these forces, giveRCKNOWLEDGMENTS
by Eq.(35). Finally, once the simulation is completed/J¢
needs to be integrated numerically. Siaéd 9¢ is calculated This work was supported by the NASA Exobiology Pro-
as a continuous function af this can be done without ap- gram. The authors thank Dr. M. A. Wilson for helpful com-
preciable loss of accuracy. In general, neither method is exments.
pected to be efficient unless a good guess for the biasing
potential is available. However, in the method based on cal-
culating the force, the derivative of this potential rather tha
the potential itself is directly used.

The method based on E(5) has one important advan-
tage over the probability density method. No post-processing  We consider the following integral:
of the data obtained from different windows, such as
wHAM,?%#Lis needed. The average force in a given bin along ut-B-u exp(—ut-A-u)du
& is simply the arithmetic average of instantaneous forces ’
recorded in this bin in all W|ndOVst different biasing forces whereA andB are square matrices ands a vector.
were used in different windows they have to be subtracted We suppose thad is a SymmetriC’ positive definite ma-

before the average is calculajeth fact, no overlapping be- trix. Then, it is possible to define a matri such thatM?
tween consecutive windows is needed if sufficiently good=A. We have
estimate of the average force is obtained from one window. . .
The new approach does not suffer from the same disad- €XA(—U-A-u)=exp(—(Mu)(Mu)).
vantaggs as .the method based.on calculating the force IN By changing variablesj=Mu, we obtain
constrained simulations. These disadvantages were discussed
in the introduction. In addition, calculating the forces of con- ¢ ¢
. ) . : : u-B-uexp—u'-A-u)du
straints becomes less demanding. In constrained simulatiory
analytical formulas for calculating forces of constraints can- 1
not be used. Instead iterative procedures with very low tol-  — ﬁJ Ut (M~1IBM Y. T exp—[uld)du
M
1

nAPPENDIX A. MULTIDIMENSIONAL INTEGRAL WITH
GAUSSIAN FUNCTIONS

erance, sometimes requiring double precision arithmetic,
have to be applied. This is needed to prevent drift of the 1
constraint from the preset value due to the accumulation of = _—Tr(M —1B|v|—1)—f exp(—[ul?)du.
numerical errors. This problem, however, does not exist in M| 2
unconstrained simulations. Accuracy in calculating the forces  After rearranging the terms we have
of constraints does not influence motion of the system. This
calculation is just a measurement performed on the systerlrf ut-B-u exp(—ut-A-u)du
and should be done sufficiently accurately that numerica
errors associated with this measurement have only negligible Tr(A~1B)
contribution to the statistical error of the average force. This = TJ exp(—ut-A-u)du. (A1)
is not a very stringent requirement.
Ultimately, both methods measure the same quantity —  For example, if we insert Eq9) into Eq.(8) one of the
the thermodynamic force. Thus, they can be seamlessly conterms is
bined. One might wish to perform unconstrained simulations 97 Y
in some range of and a series of constrained simulations in f p! _‘§p§ exr{ - _) dpg dp;-
another range of if this might lead to improved efficiency ‘g keT/ "™
or accuracy of calculating the potential of mean force. With a choice ofg such that Eq(10) is satisfied,
Calculating the thermodynamic force from uncon-
strained simulations has one considerable disadvantage com- H=3p;ZPs+ 5PZqPq+ P(£,0)
pared to calculating the same quantity from constraineqJlnd thus, using the result from Egi1) we have
simulations. In most cases, to make the method efficient it is
necessary to apply a suitable biasing force. However, it is( , dZ; H
possible to modify unconstrained simulations such that af pé,;_gips‘ ex  keT dpq dp;
good estimate of the optimal biasing force, equal to
—dAld¢, is rapidly constructed without any initial guess. kT Tr(Z‘lﬁ f exd — l do. d
Once this estimate becomes available sampling atobg- B ¢ & kgT Pa AP

Downloaded 23 Nov 2010 to 143.232.215.59. Redistribution subject to AIP license or copyright; see http://jcp.aip.org/about/rights_and_permissions



J. Chem. Phys., Vol. 115, No. 20, 22 November 2001

APPENDIX B. DERIVATIVE OF THE DETERMINANT
OF A MATRIX

We consider aN XN matrix A(t) and denote its deter-
minant by|A(t)|. The following identity is true:

dlA(t)l
=2 A,
whereA, is the matrix:
All A1N
Ai-11 Ai—1n
dA;; dAy
A=l dt 7 dt
A1 Aitin
ANl ANN
Since|A;| is equal to
IAI—IAIZ ”A Y
we obtain
d|A d
| | A A,A L
i

Using a more condensed notation, this can be written as

d| Al=Tr At — dA A2

APPENDIX C. FREE ENERGY FOR THE DECOUPLED

CASE
Recall Eqs(46) and (47):

1
< 7 1/2()\+kBTD)>
3

< : > |
-1/2

whereD is a vector defined by

B 3[25 i ‘9fr (pfkpfr
PR Tod e g T
0& & I%E;
- r . 3
(26 )ax, Ix. x| Ix. (A3)

We simplify this equation by rearranging the terms.
Expanding the first term of E§A3) and using definition
of Z, from Eq. (5) we obtain

Calculating free energies using average force 9179
2 19[2‘5 ]II’ &gr _E [Z ] [ §]Jk[ ] t?fr
- kr
ox|  ox & )

_ [ 76 PE

flrts T ¢ IXg IXg IX(
0725] a_fk) [Z*l (?gr

& Jdkr

’ ’ ’ r
(9XS (9X| (S’XS X|

A simplification follows:

DFZj [Z;l]iJZ

krls

PP, 38, 26
KeT x| ox. x| ox,
(?fr [?ék

FPPE;
-[z; ]kr(—— J
X IXE X/ IX,

L P ok
XL IXg IX[ IX/

__PE ok
axg ox| axl ox| ||’

and this leads to

krls

Di:; [Zg_l]uz

PePe, & dE 9%
KeT gx/ ax., x| ox.

0"§j 32§k 07§r

+HZ e, (A4)

The first term of Eq.(A4) can be written in a more

compact form using matrix notation. We denoteﬂy,

7 =141 ’ -1
=2 3302,

[see Eq(48)].

Then

Z3 ﬂfkﬁ
E [Zg ]|12 (p'fkpgr C?)( &X| IX, )
d
_2 [Zg |](( 5)

A5}

The second term of Eq. A4 is

(A5)

P& ¢
J gsr
; (20 2 (26 ]kr Lo
& 3
—E [Z; ].,E fj E [Z: e — o
T ox| axg x|

Due to symmetry properties,

Downloaded 23 Nov 2010 to 143.232.215.59. Redistribution subject to AIP license or copyright; see http://jcp.aip.org/about/rights_and_permissions



9180 J. Chem. Phys., Vol. 115, No. 20, 22 November 2001 E. Darve and A. Pohorille

2 s Y 0E P . CompuLe|Z§| where[Z,];; is defined by
& Jdkr 1 .
()¢ | &X (9X| [Zf]” :Iz_ E d(l 1k) d(J ,k)

EE —_ & ey N P, ki We denotez=|Z,]|. B

2 < Lo Ik x| ax. ax|  axLox] ox| * The termV'¢;-Tr(Z,"V'Z,) can be expanded as
i(;’f] ] 07[Z§]|m

SIS 1z S L s o

2 & LoE ¥4 ax| x| The most eff|C|ent way to compute this term is as fol-

lows.

1 ) . 2 :

=32 [Z; ]krﬂs[zg]kr Compute's) C operationg
. 1

) vl(j,l,r)—kgln—l(d(j,k)dz(l,r,k).

1
- —Tr(Zg 9sZ¢) = '95|Og|z‘f|’ Recall thatp is the number of coordinates while C is

the minimal number of Cartesian coordinates required

whered, is a short notation fop/dx . to define theg; .
Thus the second term of E¢A4) is equal to « Compute p2C operations
1 : S -
5 S 124V 6V loglz) (A6) vz(j,l,m)=zlﬁ[v1(j,l,r)d(m,r)+vl(j,m,r)d(l,r)].

« Compute p? operation$
[see Eq(13) for the notationV']. _ . _ .
We insert Eqs(A5) and(A6) into Eq.(A4) to obtain our Us(l)ZIE [Z; Timvajl,m)=V"§-Tr(Z,"V'Z,).
final result: "
e The term dg/dt)t-ﬂj-(dgldt) can be efficiently com-

B 1 (dé\t -~ [dé puted in the following manner.
. = 1 .. — — . .
n-3 gl A5

dt « Compute p C operations
1 o s 9%
AR Iog|Z§|>. (A7) w(i) kgld(l.k) it
« Compute p? operation$
APPENDIX D. IMPLEMENTATION DETAILS FOR Wz(i)=2 [Zgl]” wy(l).
|

CALCULATING dA/d¢;

In this section we describe the steps required to compute » Compute p C operations

dAl & using Eq.(50). We will describe the implementation Ws(i)ZE wy(l) d(l,i).
of the method using Eq50) because this is the most general [
formula. Eq.(51) for a constrained simulation is a particular . compute C2 operations

case of Eq(50) where£=0 and Eq(50) is equivalent to Eq. at L [dé
(35) in the case of an unconstrained simulation. Wy(j)= Z Wa(r)Ws( )dz(j,r,S)z(a> “H;- (a)
Recall that using Eq50), dA/9¢; is obtained by com-
puting the average of * The coefficientA can be computed by traditional
means, for example USIrRATTLE.
1 dg dg KeT _, e The final expression fo#A/d¢&; now reads
A+ E [Zg ij qr —V gj |
|z |1/2 dt 2 1 . o kgT .
= N2 121 | wa(D)+ = vs(i)
- A\ V2 ) ¢
Tr(Z;iv'z =
(Z;7V'Zy) 3 ( 1 )
divided by the average of |ﬂ§|1’2. These terms can be com- Vz 3

puted in the following way.

. o APPENDIX E. CONSTRUCTION OF THE BASIS g
e Compute all nonzero first and second derivatives:

€ In this section we discuss the construction of a basis
d(i,j)=&, such that Eq(10) is satisfied.
! P Let us consider a vectar* = (&7, . . . ,£;). The surface
Ayl k)= b £00=E, ..., () =& is denoted byS*. Let a be a
IXj IXy point on S*. We start by proving that there exists a set of
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functionsry, ... ry_p such that,, ... .§,,ry, ... In-pis  satisfies ded(G; /&xj)|xa&0 sinceVq; satisfies Eq(A8). By

a local coordinate chart arourad Consider the natural basis the inverse function theorem¢q, ... ,£,.,d1, ... ,On-p) iS
X1,... Xy of RN, the set of all orderedN-tuples of real a local coordinate chart arourad

numbers. We make the assumption that the matgixs in- The reader may be interested to know under which con-
vertible. This means in particular th&%,, ... ,V¢, spans a dition the previous result can be extended to the existence of
p-dimensional subspace dfN. At point a, there existsN functionsq such that

—p vectors amongVxy, ...,Vxy such that together with . _

V&, ... VE, they form a basis oRN. Suppose that these  * (€1, ---.&p,01, - On-p) IS @ local coordinate chart
N—p vectors areVxy, ..., Vxy_p,. Now consider the fol- arounda.

lowing map: * Zq¢(£,9)=0 in a neighborhood oh.

. Previously we required that,:(£¢,9) =0 is true only on sur-
FrlXa e X = (6 fp X Xnop)- face S* while now we want%gqg(g,q) to be equal to 0 in a
We recall the inverse function theorem: neighborhood of. This problem has an elegant solution by
Theorem 1 (Inverse function theorem): Suppose that means of the Frobenius theorem. To state this theorem we
M and N are both n-dimensional smooth manifolds, andneed to introduce some new definitions. IMtbe a mani-
f:M—N is a smooth map. If at pointaM, the tangent map fold. We denoteTl, the tangent vector space bf at pointa.
fi i Ta(M)—Tt5)(N) is an isomorphism, then there exists a We denoteC; the set of all functions for which partial de-
neighborhood U of a in M such that¥f(U) is a neighbor- rivatives of arbitrary order exist in a neighborhoodaofFor
hood of f(a) in N and [f,:U—V is a diffeomorphism(See X e T, andf € C;, we denoteXf the directional derivative of

Ref. 41 page 18 for example. f along the vectoX. See Ref. 41 page 16 for a more com-
Since det¢F; /dx;)|x#0, the functions  plete definition. Given a tangent vector fiekdon M and a
(é1,....€p X1, ... Xn—p) form a local coordinate chart by functionfe C*(M) we can define a real-valued function on

the inverse function theorem. M by

We now construct the functiorgin a neighborhood of

a. We consider the following modification of : def

(XF)a=Xaf,

=X > N (&— & where X, denotes the value oX at pointa. We are now
qi=X; - IJ(§J fj ) . .
j ready to define the Poisson bracket product of two tangent

Then vector fieldsX and:

def
ti:VXi+Z )\”ng (A8) [X’Y]:XY_YX’
: that is

on the surfaceS*. After multiplying by (1) (& 19x,), [X,YI(F)=X(Y )= Y(XF)

we have
See Ref. 41 page 31 for details.
iﬂﬁ_&:iﬁ_& SaS ié_flﬁ_fJ Suppose that we hatesmooth tangent vector fields, ,
T My dxg Ix My ax TR my axy ox ..., Xp. We define arh-dimensional smooth distribution on

M, L", by assigning at each poiatthe h-dimensional sub-

Denoting byVy andVy the matrices space ofT, spanned byX(a), ..., Xp(a). We denote

1 9q; 9¢ 1 9¢ LP={Xq, ... Xu}.
[Vq]n=2k m_a_xIaT di=y 5 X X}
k OOk P The Frobenius theorem can be stated as:
and given the definition Eq5) of Z, we obtain Theorem 2 (Frobenius theorem): Suppose [
={X4, ..., Xp} is an h-dimensional distribution in an open
Vq=VxtN-Zg, set U containing point a. A necessary and sufficient condition

for the existence of a local coordinate systéwi;w'), such

where- denotes a matrix product. that WCU is a neighborhood of a and

Therefore if we choose

A==V Z; Lh= i,...,i
o , . , ow?! own
which is always possible & is invertible, we have
is that[X;,X;] is a linear combination of X, k=1,... h

V=S 1 99 9§ _ for all i and j, inside some neighborhood®WJ of a. This
a2 My axy X condition is also known as Frobenius conditigBee Ref. 41
: : : page 35.
for all i andl. The functionsq satisfy Eq.(10). Moreover, Our result is a corollary of this theorem. First suppose
since det¢F;/dx;)|x#0, we also have that that there exists such that
G:(Xl, CEC ,XN)—>(§1, L 1§p1qll et ’qN*p) qu(gaq)zo
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FIG. 3. lllustration of the Frobenius theorem for the construction of func-

tions q satisfyingZ,,=0 in a neighborhood of a given poiat

in a neighborhood o&. For basis €,q), we have that/d¢;
is orthogonal toVq;. On one hand, th@ tangent vectors
ala¢; form an independent set and are orthogondl tg for
all j. On the other hand, the vectors 1, V¢; are necessar-

E. Darve and A. Pohorille

Gi(Xgs oo XN) = €1y -+ 4€paQas - On-p)

we have proved that destGi/ax]-)|x#0 and thus £,q) is a
local coordinate chart by the inverse function theorem.

We have proved that the existenceqofuch that €,q) is
a local coordinate chart art},= 0 in a neighborhood dd is
equivalent to the Frobenius condition:

HiV' E—H;V'§
is a linear combination of

Viéy, ... V'E,

for all i andj.

The Frobenius condition may appear a little special. We
illustrate its necessity in a more intuitive manner. Suppose
that ¢ does not satisfy the Frobenius condition at p@isind
that there exists a set of functiomssuch thatZ,,=0 and
(&¢,9) is a local coordinate chart. We show that this leads to
a contradiction. It can be proved thatéifdoes not satisfy the
Frobenius condition at poirg= (£*,9?), then there exists a

ily independent aZ; is invertible. They are also orthogonal path y such that

to Vq; for all j. Therefore, the subspace spanned/hgé ,
..., dld¢, is equal to the subspace spanned byng)¥ ¢,

.oy (Uy)VE,. As a consequence of the Frobenius theo-

rem, the vectors (bd;) V&, ..., (1m,)VE, must satisfy

the Frobenius condition. In this particular case, this condition

is that H;V' & —H; V' is a linear combination oV'¢,,
..., V'&,, whereH; is the modified Hessian matrix from
Eq. (15).

On the other hand, suppose thdtV'¢—H;V'§ is a
linear combination of

V&, ... Vg
in a neighborhood o&. The distribution

LP= 1V 1V
_m—l gl,...,m—p gp

satisfies the Frobenius condition. Thanks to the Frobeniursn

theorem, there exists a local coordinate systensuch that
J 1%

LP={—,...,—.

[ ow* &Wp]

The gradient ofw', i=p+1, is necessarily orthogonal to
eachd/ow’, j<p. Therefore it is orthogonal to (i) V¢;

for all 1<j<p, which proves that
ar=wP™t g p=wh

is such thaZ =0 in a neighborhood cd. There remains to
prove that €,q) is a local coordinate chart. A3, is invert-

¥(0)=(£",99),

y(1)=(&*,q") with q"#q?,
dy 1 v 1 v
ae m_1 fl, .,m—p cfp .

As q'#q? there existsi such thatqg/+#q®. Consider

ai(¥(1)). Since

dy 1 v 1 v
a (S m_l gl, "0 ,m_p é‘p
the function
da(y(t) __ dy
at 9y

ust be equal to zero &;,=0. Therefore

qi(v(1)=ai(¥(0))=gaf

must be equal tg;(y(1))=gq; which is a contradiction. This
is illustrated by Fig. 3.
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