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Calculating free energies using average force
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A new, general formula that connects the derivatives of the free energy along the selected,
generalized coordinates of the system with the instantaneous force acting on these coordinates is
derived. The instantaneous force is defined as the force acting on the coordinate of interest so that
when it is subtracted from the equations of motion the acceleration along this coordinate is zero. The
formula applies to simulations in which the selected coordinates are either unconstrained or
constrained to fixed values. It is shown that in the latter case the formula reduces to the expression
previously derived by den Otter and Briels@Mol. Phys.98, 773 ~2000!#. If simulations are carried
out without constraining the coordinates of interest, the formula leads to a new method for
calculating the free energy changes along these coordinates. This method is tested in two
examples — rotation around the C–C bond of 1,2-dichloroethane immersed in water and transfer of
fluoromethane across the water-hexane interface. The calculated free energies are compared with
those obtained by two commonly used methods. One of them relies on determining the probability
density function of finding the system at different values of the selected coordinate and the other
requires calculating the average force at discrete locations along this coordinate in a series of
constrained simulations. The free energies calculated by these three methods are in excellent
agreement. The relative advantages of each method are discussed. ©2001 American Institute of
Physics. @DOI: 10.1063/1.1410978#
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I. INTRODUCTION

Many molecular dynamics computer simulations
chemically and biologically interesting systems are devo
to calculating free energy changes along selected degre
freedom. In some instances, the full free energy profile is
interest. For example, nonmonotonic changes in the free
ergy of two small, hydrophobic species in water as a funct
of their separation, observed in computer simulations,1,2 re-
flect the changing patterns of hydrophobic hydration a
provide important tests of analytical theories of hydropho
interactions.3 Free energy maps of small peptide units
vacuum and in water shed light on conformational pref
ences of the protein backbone.4,5 The free energy profiles
associated with the transfer of solutes through wa
membrane systems yield solute distributions and permea
rates across membranes.6–8 In other instances, calculation
of free energy profiles provide a means of estimating the
energy difference between the end-points which, in tu
yields the relative stabilities of the corresponding states
the system. Determinations of conformational equilibria
flexible molecules and association constants between
lecular species are among important applications of s
calculations.9–12

The free energy changes along the chosen genera
coordinates can be calculated from molecular simulations
a variety of techniques.13–15 Most ~but not all16,17! of them
require that a sufficient, thermally representative sample
states of the system is generated at different values of t
9160021-9606/2001/115(20)/9169/15/$18.00
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coordinates. This leads to the interpretation of the free
ergy changes along the chosen coordinates as the potent
mean force exerted by other coordinates. Only a few me
ods for calculating this potential can be conveniently, e
ciently and generally combined with computer simulation
One such class of methods relies on obtaining the probab
density function,P(j1 , . . . ,jp), of finding the system at
valuesj1 , . . . ,jp of the p selected generalized coordinate
Once this probability density function is estimated with s
isfactory accuracy the potential of mean forc
A(j1 , . . . ,jp), can be readily calculated as

A~j1 , . . . ,jp!52kBT log P~j1 , . . . ,jp!, ~1!

whereT is temperature andkB is the Boltzmann constant.
Several extensions to this generic method can marke

improve its efficiency and accuracy. In particular, the Ham
tonian of the system can be augmented by a biasing po
tial, U(j1 , . . . ,jp), chosen such that sampling of pha
space in thep selected dimensions becomes more uniform18

The efficiency can be further improved by dividing the h
persurface defined by thep selected coordinates into a set
overlapping windows and performing separate simulation
each window. This technique is advantageous even if ther
no need to apply a biasing potential.19 The probability den-
sity functions obtained for different windows and differe
biasing potentials can be self-consistently converted into
unbiased potential of mean force for the full range
j1 , . . . ,jp .20,21
9 © 2001 American Institute of Physics
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Another, general method for calculating the potential
mean force requires calculating the derivatives]A/]j in a
series of calculations, in whichj i is kept constrained to fixed
values distributed along@j i

min ,j i
max# in the range of interest

Then, the potential of mean force is recovered by numer
integration. The derivative of the free energy is related to
constraint force needed to keep the system at the fixed v
of j i . The exact nature of this relationship was a subjec
some debate.22–26 Several initial suggestions were found
be valid only under special circumstances.22–24 Only re-
cently, the generally valid and practical to use formula w
derived for one-dimensional25,27,28 and multi-dimensional26

cases. In this paper, this formula is derived in the gen
context of multi-dimensional reaction coordinates for co
strained and unconstrained simulations. All previous deri
tions were done in the case of constrained simulations o
This formula requires that the constraint force is corrected
geometric factors that depend onj1 , . . . ,jp but not on other
~usually difficult to define! generalized coordinates. Sinc
the constraint force can be readily calculated in compu
simulations~e.g., using theSHAKE29 or RATTLE30 algorithms!
practical applications of this method are quite feasible.

Compared to the probability density method, the meth
of the constraint force has several advantages. In particul
does not require a good guess of the biasing potentia
achieve efficient sampling ofj1 , . . . ,jp . Providing such a
guess could be a difficult task, especially for qualitative
new problems. Further, data analysis is markedly simpler
procedure for matching results obtained for overlapping w
dows is required. However, the constraint force method a
suffers from several disadvantages. It may be inaccurat
inefficient if the potential of mean force is a quickly chan
ing function ofj1 , . . . ,jp . In complex cases, involving fo
example insertion of a peptide into a membrane or indu
fit of an inhibitor into an enzyme, preparation of the syste
at consecutive, fixed values of the selected degrees of f
dom may be difficult, and subsequent equilibration of t
system may be slow. In some instances, application of
constraint force method may lead to quasi nonergodic beh
ior. Finally, information about the dynamic behavior of th
system, which also may be of interest in a simulation, is
available in this approach.

In this paper, we propose an alternative and equally g
eral approach to calculating the potential of mean for
which combines several desired features of both methods
in the constraint force method, the potential of mean forc
obtained by integrating its derivative. This derivative, ho
ever, is calculated from unconstrained rather than c
strained simulations. The centerpiece of our method is a n
general formula that connects]A/]j i with the instantaneous
force acting onj i . This force is acting along the gradient o
j i such that if subtracted from the equations of motion
acceleration ofj i is zero. This instantaneous force can
also related to the forces of constraint in a constrained si
lation. Then, the forces of constraint are applied to maint
j i at a constant value and the force acting onj i is exactly
equal to the opposite of these forces of constraint.

The formula that relates]A/]j i to the instantaneou
force acting onj i is different for unconstrained simulation
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than for constrained simulations. However, as will be sho
below, it converges to the den Otter–Briels formula at t
appropriate limits. The value of the new formula is not on
in providing another route to calculating the potential
mean force but also in clarifying the relationship between
thermodynamic force and the force of constraint. By doi
so it forms the theoretical basis for highly efficient metho
to calculate the potential of mean force and to investig
rare events.31

In the next section we derive the formula for]A/]j i .
This is done in two steps. First, the expression for]A/]j i in
unconstrained simulations of a Hamiltonian system is
tained. Then, this expression is generalized so that it app
when the system is only approximately Hamiltonian, as
the case in adiabatic approximation. Then we consider
numerical examples — rotation around the C–C bond
1,2-dichloroethane immersed in water and transfer of fl
romethane across the water-hexane interface. These
amples involve only a single reaction coordinate. Applic
tions to multidimensional cases will be consider
separately. We close the paper with discussion of the n
method in comparison to its alternatives. The details of h
the method is applied in practice are given in one of
Appendices.

II. THEORY

A. Generalized coordinates

We assume that we have a set ofM particles and we
denote byN the total number of degrees of freedom of o
system (N53M ). We further assume that there exists
Hamiltonian,H, for this system:

H~x1 , . . . ,xN ,p1 , . . . ,pN!5
1

2 (
i

pi
2

mi
1F~x1 , . . . ,xN!,

dxi

dt
5

]H

]pi
,

dpi

dt
52

]H

]xi
,

where (x1 , . . . ,xn) are Cartesian coordinates, (p1 , . . . ,pn)
are the conjugated momenta,F is the potential andt is time.

We suppose that a set ofN2p functions (q1 , . . . ,qN2p)
can be defined such that (j1 , . . . ,jp ,q1 , . . . ,qN2p) forms a
complete set of generalized coordinates. By definition,
Cartesian coordinates (x1 , . . . ,xN) can be written as func-
tions of j i ,qj :

x1~j1 , . . . ,jp ,q1 , . . . ,qN2p!

. . .

xN~j1 , . . . ,jp ,q1 , . . . ,qN2p!.

We will often denote byx the vector (x1 , . . . ,xN) and
similarly for j, q, pj andpq .

The derivative with respect toj i is defined as the deriva
tive computed withj j , j Þ i and qk , k51, . . . ,N2p con-
stant. Using Definition in Eq.~1! of A we can write
e or copyright; see http://jcp.aip.org/about/rights_and_permissions
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]A

]j i
52kBT

]P

]j i

P
. ~2!

The probability densityP for a canonical ensemble ca
be written as a function of the HamiltonianH of the system:

P~j1* , . . . ,jp* !5
1

NE dx1 . . . dxN dp1 . . .

dpNd~j12j1* ! . . . d~jp2jp* !expS 2
H

kBTD ,

~3!

whereN is a normalization factor.
We introduce additional notations to express the Ham

tonianH as a function of the generalized coordinates.
The Jacobian,J, of the transformation from Cartesian t

generalized coordinates is defined as

J5
def1

]j1

]x1
. . .

]j1

]xN

. . . . . . . . .

]jp

]x1
. . .

]jp

]xN

]q1

]x1
. . .

]q1

]xN

. . . . . . . . .

]qN2p

]x1
. . .

]qN2p

]xN

2 5S Jj

Jq
D , ~4!

whereJj are the firstp lines andJq are the remaining lines
The inverse ofJ is denoted byJ21. We define matrixZ as

Z5
def

JM21Jt,

where Jt is the transpose of matrixJ and M is the mass
matrix:
n

loaded 23 Nov 2010 to 143.232.215.59. Redistribution subject to AIP licens
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M5S m1 0 . . . 0

0 m2 . . . 0

. . . . . . . . . . . .

. . . . . . . . . mN

D .

Matrix Z can be written as

Z5S Zj Zjq

Zqj Zq
D ,

whereZj is a p3p matrix defined by

@Zj# i j 5
def

(
k51

N
1

mk

]j i

]xk

]j j

]xk
, ~5!

Zjq is a p3(N2p) matrix, Zqj5Zjq
t and Zq is a (N2p)

3(N2p) matrix.
The inverse ofZ is denoted byA:

A5S Aj Ajq

Aqj Aq
D .

Using generalized coordinates, the Hamiltonian of t
system takes the form

H~j,q,pj ,pq!5 1
2pj

t Zjpj1 1
2pq

t Zqpq1pj
t Zjqpq

1F~j,q!, ~6!

wherepj
t andpq

t are the transpose of vectorspj andpq .
Inserting the expression forP from Eq. ~3! into ~2!, we

obtain:

]A

]j i
5

*dq dpq dpj

]H

]j i
expS 2

H

kBTD
*dq dpq dpj expS 2

H

kBTD ~7!

with a change of variables from Cartesian coordinates
generalized coordinates. For all functionF, we define the
statistical average ofF at fixedj* 5(j1* , . . . ,jp* ) as
^F&j* 5

E dx1 . . . dxN dp1 . . . dpNd~j12j1* ! . . . d~jp2jp* !expS 2
H

kBTDF~x1 , . . . ,xN!

*dx1 . . . dxN dp1 . . . dpNd~j12j1* ! . . . d~jp2jp* !expS 2
H

kBTD
5

*dq dpq dpjF~x1 , . . . ,xN!

*dq dpq dpj expS 2
H

kBTD ,
where in the last equationj5j* . We these notations we ca
rewrite Eq.~7! as

]A

]j i
5 K ]H

]j i
L

j

. ~8!

By differentiating both sides of Eq.~6! we obtain
]H

]j i
5

1

2
pj

t ]Zj

]j i
pj1

1

2
pq

t ]Zq

]j i
pq1pj

t ]Zjq

]j i
pq1

]F

]j i
. ~9!

After substituting Eq. ~9! in Eq. ~8!, we need to
compute
e or copyright; see http://jcp.aip.org/about/rights_and_permissions
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E dpq dpj expS 2
H

kBTD
3S 1

2
pj

t ]Zj

]j i
pj1

1

2
pq

t ]Zq

]j i
pq1pj

t ]Zjq

]j i
pqD .

We show in Appendix E that for a givenj* , it is pos-
sible to choose the basisq such that

Zqj~j* ,q!50, ;q. ~10!

With this choice ofq, for j5j* , the function exp(2H/kBT)
is an even function ofpj andpq and thus

E dpq dpj expS 2
H

kBTD pj
t ]Zjq

]j i
pq50.

Using the result from Appendix A, we obtain for the follow
ing integral:

E dpq dpj expS 2
H

kBTD S 1

2
pj

t ]Zj

]j i
pj1

1

2
pq

t ]Zq

]j i
pqD

5
kBT

2
TrS Z21

]Z

]j i
D E dpq dpj expS 2

H

kBTD .

The trace ofZ21(]Z/]j i) can be computed using th
result from Appendix B:

kBT

2
TrS Z21

]Z

]j i
D5kBT

] loguJu
]j i

and thus

¹jA5^¹jF1kBT¹j loguJu&j . ~11!

The notation¹jA denotes a vector withp coordinates:

¹jA5S ]A

]j1

A

]A

]jp

D .

The derivative of the free energy can be seen as resu
from two contributions: the mechanical forces acting alonj
and the variations of the volume element associated with
generalized coordinates. This formula has been previo
derived in many papers,28,32 and is also given by Smit an
Frenkel.33

B. Thermodynamics force

Equation~8! explicitly depends on the choice of all gen
eralized coordinates, includingq. As this is not practical
from a computational point of view, we now modify th
equation to obtain an expression independent of the choic
q. This is done by integrating analytically as many terms
possible in Eq.~8!.

We start by simplifying the notations. We will now de
note

xi85
def

Amixi , ~12!
loaded 23 Nov 2010 to 143.232.215.59. Redistribution subject to AIP licens
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¹ i85
def ]

]xi8
, ~13!

pxi
8 5

def pi

Ami

, ~14!

Hr5
defS ]2j r

]xi8]xj8
D 5S 1

Amimj

]2j r

]xi ]xj
D , ~15!

whereHr represents the modified Hessian ofj r .
The symbol• denotes a dot product or a matrix-vect

product, depending on the context.
We start from the equation for the time evolution ofpj i

:

dpj i

dt
52

]H

]j i
. ~16!

The momentum vectorpj is defined as the derivative o
the LagrangianL with respect toj̇. Since the LagrangianL
is defined as

L5
1

2 S j̇

dq

dt
D t

•A•S j̇

dq

dt
D 2F~j,q!

the momentumpj is equal to

pj5
def]L

]j̇
5Aj

dj

dt
1Ajq

dq

dt
. ~17!

In Eq. ~17!, pj is a vector. Considering one coordina
pj i

we obtain

pj i
5(

j
@Aj# i j

dj j

dt
1(

k
@Ajq# ik

dqk

dt
. ~18!

We can differentiate both sides of Eq.~18! with respect
to t and use Eq.~16! to obtain an expression for]H/]j i . As
the right-hand side of Eq.~18! is the sum of two products, its
derivative contains four terms:

]H

]ji
52

dpji

dt
52(

j

d@Aj# i j

dt

dj j

dt
2(

j
@Aj# i j

d2j j

dt2

2(
k

d@Ajq# ik

dt

dqk

dt
2(

k
@Ajq# ik

d2qk

dt2
. ~19!

SinceAZ5I by definition, we have

AjZj1AjqZqj5I , ~20!

AjZjq1AjqZq50. ~21!

Equations~20! and ~21! simplify as Zqj satisfies Eq.
~10!:

AjZj5I , ~22!

AjqZq50. ~23!

The matricesZj andZq are invertible. Therefore,

Aj5Zj
21, ~24!
e or copyright; see http://jcp.aip.org/about/rights_and_permissions
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Ajq50. ~25!

The last term in Eq.~19! is thus equal to zero.
The derivative ofAj can be calculated by differentiatin

Eq. ~20!:

05Aj

dZj

dt
1

dAj

dt
Zj1Ajq

dZqj

dt
1

dAjq

dt
Zqj .

It leads to

dAj

dt
52Zj

21 dZj

dt
Zj

21, ~26!

whereAj has been replaced byZj
21 thanks to Eq.~24!.

We now computedZj /dt using the chain rule of deriva
tion:

dZj

dt
5(

i

]Zj

]xi

dxi

dt
5

]Zj

]x8
•px8 . ~27!

We insert Eq. 27 into Eq. 26:

dAj

dt
52Zj

21S ]Zj

]x8
•px8D Zj

21 .

Next, we insert the last equation into Eq. 19:

]H

]j i
52(

j
@Zj

21# i j

d2j j

dt2
1(

jk
@Zj

21# i j F ]Zj

]x8
•px8G

jk

pjk

2(
k

d@Ajq# ik

dt

dqk

dt
. ~28!

We now focus on the second term on the right-hand s
of this equation. Using the definition ofpj andpq as deriva-
tives of the Lagrangian with respect toj̇ and q̇, px8 can be
expressed in terms ofpj andpq :

px85~J8! tS pj

pq
D , ~29!

whereJ8 is analogous toJ in Eq. ~4! but the derivatives are
taken with respect toxi8 rather thanxi .

We multiply the previous equation by]Zj /]x8:

]Zj

]x8
•px85

]Zj

]x8
~J8! tS pj

pq
D . ~30!

We obtain a new expression for the second term on
right-hand side of Eq.~28!:

(
jk

@Zj
21# i j F ]Zj

]x8
•px8G

jk

pjk

5(
jklr

@Zj
21# i j

]@Zj# jk

]xl8
@Jj8# rl pjr

pjk

1(
jklr

@Zj
21# i j

]@Zj# jk

]xl8
@Jj8# r 1p,l pqr

pjk
. ~31!
loaded 23 Nov 2010 to 143.232.215.59. Redistribution subject to AIP licens
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In the last equation, we have split the right-hand s
into odd and even functions ofpj andpq . We want to com-
pute

E dpq dpj expS 2
H

kBTD ]H

]j i
.

Because we chose a basisq such that Eq.~10! is true, the
function exp(2 H/kBT) is even inpj and pq . Therefore in
Eq. ~31!, all odd terms inpj and pq cancel whereas eve
terms contribute. The only contribution comes from qu
dratic terms inpj :

(
jklr

@Zj
21# i j

]@Zj# jk

]xl8
@Jj8# rl pjr

pjk
.

Using Eq.~A1! from Appendix A, we compute the inte
gral overpj andpq :

E dpq dpj expS 2

1

2
pj

t Zjpj

kBT
D S (

kr

]@Zj# jk

]xl8
@Jj8# rl pjr

pjkD
5kBT(

kr

]@Zj# jk

]xl8
@Jj8# rl @Zj

21#krE dpq dpj

3exp
1
2 pj

t Zjpj

kBT
.

We multiply the previous equation byZj
21 to obtain

K (
jk

@Zj
21# i j F ]Zj

]x8
•px8G

jk

pjkL
j

5kBTK (
jkrl

@Zj
21# i j

]@Zj# jk

]xl8
@Zj

21#kr

]j r

]xl8
L

j

. ~32!

We now prove that the third term on the right-hand si
of Eq. ~28! does not contribute tô¹jH&j . Transformations
similar to the ones done for the second term are perform

The derivative with respect tot is written as a scalar
product withpx8 :

d@Ajq# ik

dt
5

]@Ajq# ik

]x8
•px8 .

Inserting Eq.~29! into the previous equation,

d@Ajq# ik

dt
5

]@Ajq# ik

]x8
•~J8! t

•S pj

pq
D .

The derivative ofqk can be expressed in terms ofpq

only since the basisq satisfies Eq.~10!:

dqk

dt
5(

l
@Zq#klpql

.

As before when integrating overpj and pq , the odd
terms inpj andpq cancel and we obtain
e or copyright; see http://jcp.aip.org/about/rights_and_permissions
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E dpq dpj expS 2
H

kBTD d@Ajq# ik

dt

dqk

dt

5(
lsr

E dpq dpj expS 2
H

kBTD
3

]@Ajq# ik

]xs8
@J8# r 1p,s@Zq#klpql

pqr

5(
lsr

E dpq dpj expS 2
H

kBTD
3

]@Ajq# ik

]xs8

]qr

]xs8
@Zq#klpql

pqr
.

We now prove that

(
s

]@Ajq# ik

]xs8

]qr

]xs8
5(

s

1

ms

]@Ajq# ik

]xs

]qr

]xs
50.

The vectors (1/ms)(]qr /]xs, are tangent to the surfacej
5j* since they satisfy Eq.~10! and therefore are orthogona
to ¹j1 , . . . , ¹jp . The function@Ajq# ik is equal to zero ev-
erywhere on the surfacej5j* . As a consequence, its deriva
tive along any tangent to the surfacej5j* , is zero. In par-
ticular,

(
s

]@Ajq# ik

]xs

1

ms

]qr

]xs
50.

We have proved that only the first two terms in Eq.~28!
contribute. In matrix notation, inserting Eq.~32! in Eq. ~28!
we have

^¹jH&j5kBTK (
l

1

ml
Zj

21
•] lZj•Zj

21
•¹jL

j

2K Zj
21 d2j

dt2
L

j

, ~33!

where we denote] lZj5]Zj /]xl .
If we denote byl the vector ofRATTLE Lagrange mul-

tipliers they are by definition such that

Zjl5
def

2
d2j

dt2
. ~34!

We now summarize what we have obtained so far.
have started our derivation from Eq.~8! which relates the
derivative ofA with respect toj i to the average of]H/]j i .
We observed that this expression is not very useful a
depends on a particular choice of generalized coordina
We transformed this expression by analytically integrat
some terms and we obtained Eq.~33!. This new expression is
much more useful than the initial one@Eq. ~8!# as it can be
computed numerically without any explicit reference to
particular choice of generalized coordinates. Finally, by
serting Eq.~34! in the last term of Eq.~33!, we obtain
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e

it
s.

g

-

¹jA5K l1kBT(
l

1

ml
Zj

21
•] lZj•Zj

21
•] ljL

j

5
def

^Fj
(1)&j .

~35!

The following equality can be used to simplify the pr
vious equation:

] lZj
2152Zj

21
•] lZj•Zj

21.

We insert the last equation into Eq.~35!

¹jA5K l2kBT(
l

1

ml
] lZj

21
•] ljL

j

. ~36!

However, the last equation is not as convenient as Eq.~35!
from a computational point of view because] lZj

21 is not
readily available.

Equation ~35! has a similar interpretation to Eq.~11!
although the terms are now different. The first terml is
related to the force acting alongj, which is the opposite of
the constraint force. The second term( l(1/ml)] lZj

21
•] lj is

a correction term which accounts for the variation of an
finitesimal volume element in generalized coordinates.

C. Decoupled degrees of freedom

It is often desirable to consider a situation wherej is
decoupled from the other degrees of freedom. By decoup
we mean thatd2j/dt2 is not a function of the coordinatesq
but instead is governed by some other equation of motion
the previous paper,31 we derived the formula for]A/]j that
applies to a single reaction coordinate. In this paper,
formula is generalized to a multi dimensional case.

One example of decoupling is a constrained simulat
in which j is constant. In this casej̇50 andd2j/dt250. We
will see that using Eq.~35! we will recover the result from
den Otter and Briels.26 Our derivation can thus be seen as
generalization of their result.

Another choice, which was previously discussed,31 is a
diffusion equation such that the motion ofj is random and
approximately adiabatic. The choice of a Langevin equat
is a convenient one because adiabatic approximation ca
achieved simply by varying the diffusion constant.

Deriving the relation for¹jA in the decoupled case re
quires modifying the probability density ofpj . Previously
this density was given by

f j5expS 2 1
2pj

t Zjpj

kBT
D . ~37!

For a constraint simulation,f j becomes a Dirac delta func
tion at the location of the constraint whereas for the ot
decoupled case,f j is a constant function. Thus if we calcu
late analytically the integral overpj in Eq. ~35! with f j given
by Eq. ~37!, we will obtain the correction for the decouple
case.

Since the equation for the decoupled case can be u
for an arbitraryf j , it can be seen as a generalization of E
~36!. In particular, we will show that in the case off j satis-
fying Eq. ~37! (j coupled toq), the correction to Eq.~36! is
equal to zero. Thus, one can implement the equation for
decoupled case@Eq. ~46!# and use it in all situations.
e or copyright; see http://jcp.aip.org/about/rights_and_permissions
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By f q we denote

f q5expS 2

1
2 pq

t Zqpq

kBT
D .

We start by calculatingd2j j /dt2. The first derivative is

dj j

dt
5(

k
¹kj j

dxk

dt
.

If we differentiate again with respect tot,

d2j j

dt2
52(

k

1

mk
¹kj j¹kF1(

k

dxk

dt

d ¹kj j

dt
, ~38!

52(
k

1

mk
¹kF¹kj j1px8

t
•Hj•px8 , ~39!

using the definition in Eq.~15! of Hj .
In Eq. 35, the only term that depends onpj is l. As l is

related tod2j j /dt2 through Eq.~34!, we need to compute

2Zj
21E dpq dpj f qf j

d2j

dt2
.

Insertion of Eq.~39! leads to the computation of a sim
pler quantity:

2Zj
21E dpq dpj f qf j~px8! t

•Hj•px8 .

Again we insert Eq.~29! to obtain an expression explic
itly depending onpj andpq :

E dpq dpj f q f j~px8! t
•Hj•px8

5E dpq dpj f qf jS pj

pq
D t

•J8Hj~J8! t
•S pj

pq
D .

The odd contributions inpj andpq cancel and we obtain

E dpq dpj f qf j~px8! t
•Hj•px8

5E dpj f jpj•Jj8Hj~Jj8! t
•pjE dpqf q

1E dpqf qpq•Jq8Hj~Jq8! t
•pqE dpj f j . ~40!

By performing a change of variables withp̃5Zj
1/2pj we

can show that

E dpj f j5E dpj expS 2

1
2 pj

t Zjpj

kBT
D }

1

uZju1/2
, ~41!

whereuZju is the determinant ofZj .
The first term on the right-hand side of Eq.~40! can be

computed using Eq.~A1! given in the Appendix:
loaded 23 Nov 2010 to 143.232.215.59. Redistribution subject to AIP licens
E dpj f j pj•Jj8Hj~Jj8! t
•pj

5kBT(
krls

@Zj
21#kr

]j r

]xl8

]jk

]xs8

]2j j

]xl8 ]xs8
E dpj f j . ~42!

For the unperturbed Hamiltonian system,pj is sampled
according to

expS 2kBT

2
pj

t ZjpjD .

To account for a different sampling in the decoupl
case, we need to subtract all the contributions ofpj to Fj

(1)

@see Eq.~35!# and replace them with the correct contributio
computed for the unperturbed Hamiltonian system. The
correct contribution ofpj to Fj

(1) is equal to

2(
j

@Zj
21# i j (

krls
pjk

pjr

]j r

]xl8

]jk

]xs8

]2j j

]xl8 ]xs8
. ~43!

This is the term that we need to subtract.
The correct contribution is equal to the right hand side

Eq. ~42! multiplied by 2Zj
21 :

2kBT(
j

@Zj
21# i j (

krls
@Zj

21#kr

]j r

]xl8

]jk

]xs8

]2j j

]xl8 ]xs8
. ~44!

Equation ~42! shows that the last two terms@Eq. ~43!
and~44!# are equal in the case ofj coupled toq ~unperturbed
Hamiltonian!. Thus the final equation that we obtain, E
~46!, is applicable even whenj is coupled toq and it is equal
to Eq. ~36! in this particular case.

Adding Eq. ~44! and subtracting Eq.~43! we have
proved that the correction term is

(
j

@Zj
21# i j (

krls
~pjk

pjr
2kBT@Zj

21#kr!
]j r

]xl8

]jk

]xs8

]2j j

]xl8 ]xs8
.

~45!

There is a multiplicative factor which is equal to 1/uZju1/2

@see Eq.~41!#.
Adding the correction term from Eq.~45! to Eq.~35! and

multiplying by 1/uZju1/2 we have

¹jA5

K 1

uZju1/2
~l1kBTD!L

j

K 1

uZju1/2L
j

5
def

K 1

uZju1/2
Fj

(2)L
j

K 1

uZju1/2L
j

, ~46!

whereD is a vector defined by

Di52(
rl

]@Zj
21# ir

]xl8

]j r

]xl8
1(

j
@Zj

21# i j (
krls

3S pjk
pjr

kBT
2@Zj

21#krD ]j r

]xl8

]jk

]xs8

]2j j

]xl8 ]xs8
. ~47!

The first term is the original term from Eq.~36!. The other
terms are the correction from Eq.~45!.
e or copyright; see http://jcp.aip.org/about/rights_and_permissions
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We now introduce a new notation:

H̃j5Zj
21Jj8Hj~Jj8! tZj

21. ~48!

See Eqs.~4!, ~5! and ~15! for the definition ofJj , Zj and
to

t
hr
s.
es
s

p

.
ra

qu
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Hj . Note thatH̃j is only a function of the first and secon
derivatives ofj with respect to Cartesian coordinates and c
thus be easily computed numerically.

In Appendix C, we prove thatDi is equal to
Di5(
j

@Zj
21# i j S 1

kBT S dj

dt D
t

•H̃j•S dj

dt D1
1

2
¹8j j•¹8loguZju D ~49!

@see Eq.~A7!#.
Inserting the previous equation in Eq.~46!, the derivative of the energy can be expressed as

]A

]j i
5

K 1

uZju1/2S l1(
j

@Zj
21# i j S S dj

dt D
t

•H̃j•S dj

dt D1
kBT

2
¹8j j•¹8loguZju D D L

j

K 1

uZju1/2L
j

. ~50!
ate
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From a practical point of view, it is more convenient
write the second term as

¹8loguZju5Tr~Zj
21¹8Zj!

because the derivative ofuZju is not readily available. See
Eq. ~13! for the definition of¹8.

In most cases the degrees of freedom$j i% are not func-
tions of all the Cartesian coordinates but rather a subse
them. For example, a bond angle depends only on the t
atoms forming the bond and a torsion angle on four atom
we denoteC the minimal number of Cartesian coordinat
needed to computej i then the number of floating operation
required to computeFj

(1) andFj
(2) is on the order ofC 3 for

each coordinatej i . In Appendix D, we describe step by ste
the implementation of our method.

D. Constrained simulation

In the particular case of a constraint simulationj̇50.
Then the first term in the equation forDi @see Eq.~49!#
vanishes and we are left with

Di5
1

2 (
j

@Zj
21# i j ~¹8j j•¹8loguZju!.

The complete formula for¹jA then reads

]A

]j i
5

K 1

uZju1/2S l1
kBT

2 (
j

[Zj
21] i j (¹8j j•¹8loguZju D D L

j

K 1

uZju1/2L
j

.

~51!

This is the formula obtained by den Otter and Briels26

Note that this formula is applicable to the case of seve
degrees of freedom. Several authors derived a similar e
tion for a single reaction coordinate.25,27 Note that in Eq.
of
ee
If

l
a-

~51!, Zj is a matrix,uZju denotes its determinant andl is a
vector. This contrasts with the single reaction coordin
case.25,27

III. NUMERICAL RESULTS

To examine the performance of the method based on
~46!, we studied two test cases. One example involved
culating the potential of mean force for the rotation of t
C–C bond in 1,2-dichloroethane~DCE! dissolved in water.
In the second example, the potential of mean force for
transfer of fluoromethane~FMet! across the water-hexane in
terface was obtained.

The first system consisted of a DCE molecule s
rounded by 343 water molecules, all placed in a cubic b
whose edge length was 21.73 Å. This yielded a water den
approximately equal to 1 g/cm3. The second system con
tained one FMet molecule and a lamella of 486 water m
ecules in contact with a lamella of 83 hexane molecules. T
system was enclosed in a box, whosex,y-dimensions were
24 3 24 Å2 and thez-dimension, perpendicular to the wate
hexane interface, was equal to 150 Å. Thus, the system c
tained one liquid–liquid interface and two liquid-vapor inte
faces. The same geometry was used in a series of prev
studies on the transfer of different solutes across the wa
hexane interface.31 In both cases, periodic boundary cond
tions were applied in the three spatial directions.

Water-water interactions were described by the TIP
model.34 The models of DCE and FMet were described
detail previously.35,36 Water-DCE interactions were define
from the standard combination rules.37 All intermolecular in-
teractions were truncated smoothly with a cubic spline fu
tion between 8.0 and 8.5 Å. Cutoff distances were measu
between molecules or neutral groups~in DCE oxygen atoms
of water and carbon atoms of the solutes and hexane se
as molecular or group centers.

The equations of motion were integrated using the
e or copyright; see http://jcp.aip.org/about/rights_and_permissions
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locity Verlet algorithm with a 1 fstime step for DCE and 2 fs
time step for FMet. The temperature was kept constan
300 K using the Martynaet al. implementation38 of the
Nosé–Hoover algorithm. This algorithm allows for genera
ing configurations from a canonical ensemble. Bond leng
and bond angles of water molecules were kept fixed us
RATTLE.30

For DCE in water, the potential of mean force was c
culated alongj, defined as the Cl–C–C–Cltorsional angle.
For the transfer of FMet across the water-hexane interfacj
was defined as the z component of the distance between
centers of mass of the solute and the hexane lamella~since
both cases involved only one-dimensional potentials of m
force we drop the subscripti following j). For each system
three sets of calculations were performed. They yieldedA(j)
using the probability density method and the methods of
constraint force from unconstrained and constrained sim
tions.

To obtainA(j) from the probability density method,
series of simulations was performed. For DCE, we use
single window and a biasing potential obtained previousl31

The trajectory was 2 ns long. For FMet,j was constrained by
a harmonic potential in five overlapping windows. No bia
ing potential was applied. For each window, a molecular
namics trajectory 2.4 ns long was obtained. From this tra
tory the probability density,P(j), was calculated. The
probability density in the full range ofj was constructed by
matching P(j) in the overlapping regions of consecutiv
windows.20 A(j) was calculated from the completeP(j)
using Eq.~1!.

Calculations of]A/]j from unconstrained simulation
were very similar. For DCE, we used a biasing potential a
one window. For FMet we did not use a biasing potential a
divided the full range ofj into five windows. In these simu
lations, however, there was no need for windows to over
The molecular dynamics trajectory in each window was
ns long. In each molecular dynamics step, the force of c
straint was calculated usingRATTLE. The appropriate geo
metric corrections required for the calculation of]A/]j in
Eq. ~36! were obtained using the algorithm described in
Appendix. Since no biasing force was applied the aver
force in each bin alongj was simply the arithmetic averag
of the instantaneous forces.

]A/]j was obtained from constrained simulations
generating a series of trajectories, in whichj was fixed at
several values uniformly spanning the full range of intere
For DCE, simulations were carried out at 37 values ofj in
the range between 0 and 180 deg. This corresponds to 5
separation between two values ofj. For FMet,j was fixed at
102 values between210.1 Å and 10.1 Å~0.2 Å separation
between two values!. The constraints onj were enforced
using RATTLE. The average thermodynamic force was o
tained by correcting the calculated constraint force accord
to Eq. ~51!. Once calculations of]A/]j were completed for
all discrete values ofj, A(j) was obtained by numerica
integration.

The potentials of mean force for rotation of DCE in w
ter and transfer of FMet across the water-hexane interf
obtained from all three methods, are shown in Figs. 1 an
loaded 23 Nov 2010 to 143.232.215.59. Redistribution subject to AIP licens
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respectively. For DCE, gauche and trans conformations w
found to have nearly the same free energy, and were s
rated by a barrier 4.2 kcal/mol high. These results are
close agreement with the results obtained previously us
the same potential functions.35,39 For FMet, the free energy
between dissolving this molecule in water and in hexane w
found to be 0.6 kcal mol21. An appreciable minimum in the
potential of mean force, approximately 1.4 kcal mol21 deep,
was observed near the interface. A very similar profile
A(j) was obtained using the particle insertion method.40

IV. DISCUSSION

In both numerical examples presented in the previo
section, the method based on calculating the probability d
sity alongj and both methods relying on calculating]A/]j
yield the potentials of mean force that are identical to with

FIG. 1. The free energy of rotating DCE around the C–C bond compu
using the probability density method and the methods of the constraint f
from unconstrained and constrained simulations. On thex-axis is the value
of the Cl–C–C–Cltorsional angle~in deg!. On they-axis is the free energy
~in kcal mol21).

FIG. 2. The free energy of transferring FMet across the water-hexane i
face computed using the probability density method and the methods o
constraint force from unconstrained and constrained simulations. On
x-axis is the value of the reaction coordinatej ~in Å!. On they-axis is the
free energy~in kcal mol21).
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statistical error. This confirms applicability of Eq.~35! to the
calculation of the potential of mean force in unconstrain
simulations.

From the practical point of view the new method is qu
similar to the probability density method. During the cour
of a simulation there are only two additional steps involv
1— calculation of instantaneous forces of constraints
evaluation of the geometric corrections to these forces, gi
by Eq.~35!. Finally, once the simulation is completed]A/]j
needs to be integrated numerically. Since]A/]j is calculated
as a continuous function ofj this can be done without ap
preciable loss of accuracy. In general, neither method is
pected to be efficient unless a good guess for the bia
potential is available. However, in the method based on
culating the force, the derivative of this potential rather th
the potential itself is directly used.

The method based on Eq.~35! has one important advan
tage over the probability density method. No post-process
of the data obtained from different windows, such
WHAM,20,21 is needed. The average force in a given bin alo
j is simply the arithmetic average of instantaneous for
recorded in this bin in all windows~if different biasing forces
were used in different windows they have to be subtrac
before the average is calculated!. In fact, no overlapping be
tween consecutive windows is needed if sufficiently go
estimate of the average force is obtained from one wind

The new approach does not suffer from the same dis
vantages as the method based on calculating the forc
constrained simulations. These disadvantages were discu
in the introduction. In addition, calculating the forces of co
straints becomes less demanding. In constrained simula
analytical formulas for calculating forces of constraints ca
not be used. Instead iterative procedures with very low
erance, sometimes requiring double precision arithme
have to be applied. This is needed to prevent drift of
constraint from the preset value due to the accumulation
numerical errors. This problem, however, does not exis
unconstrained simulations. Accuracy in calculating the for
of constraints does not influence motion of the system. T
calculation is just a measurement performed on the sys
and should be done sufficiently accurately that numer
errors associated with this measurement have only neglig
contribution to the statistical error of the average force. T
is not a very stringent requirement.

Ultimately, both methods measure the same quantity
the thermodynamic force. Thus, they can be seamlessly c
bined. One might wish to perform unconstrained simulatio
in some range ofj and a series of constrained simulations
another range ofj if this might lead to improved efficiency
or accuracy of calculating the potential of mean force.

Calculating the thermodynamic force from unco
strained simulations has one considerable disadvantage
pared to calculating the same quantity from constrain
simulations. In most cases, to make the method efficient
necessary to apply a suitable biasing force. However, i
possible to modify unconstrained simulations such tha
good estimate of the optimal biasing force, equal t
2]A/]j, is rapidly constructed without any initial gues
Once this estimate becomes available sampling alongj be-
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comes nearly uniform, which minimizes statistical error fo
fixed length of the simulation. We call this approach t
Adaptive Force Method. So far, this method has been app
to study internal rotation of DCE in water, and has proven
be very successful.31 Other applications will follow.
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APPENDIX A. MULTIDIMENSIONAL INTEGRAL WITH
GAUSSIAN FUNCTIONS

We consider the following integral:

E ut
•B•u exp~2ut

•A•u!du,

whereA andB are square matrices andu is a vector.
We suppose thatA is a symmetric, positive definite ma

trix. Then, it is possible to define a matrixM such thatM2

5A. We have

exp~2ut
•A•u!5exp~2~Mu! t~Mu!!.

By changing variables,ũ5Mu, we obtain

E ut
•B•u exp~2ut

•A•u!du

5
1

uM u E ũt
•~M 21BM21!•ũ exp~2uũu2!dũ

5
1

uM u
Tr~M 21BM21!

1

2E exp~2uũu2!dũ.

After rearranging the terms we have

E ut
•B•u exp~2ut

•A•u!du

5
Tr~A21B!

2 E exp~2ut
•A•u!du. ~A1!

For example, if we insert Eq.~9! into Eq. ~8! one of the
terms is

E pj
t ]Zj

]j i
pj expS 2

H

kBTDdpq dpj .

With a choice ofq such that Eq.~10! is satisfied,

H5 1
2pj

t Zjpj1 1
2pq

t Zqpq1F~j,q!

and thus, using the result from Eq.~A1! we have

E pj
t ]Zj

]j i
pj expS 2

H

kBTDdpq dpj

5kBT TrS Zj
21 ]Z

]j i
D E expS 2

H

kBTDdpq dpj .
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APPENDIX B. DERIVATIVE OF THE DETERMINANT
OF A MATRIX

We consider aN3N matrix A(t) and denote its deter
minant byuA(t)u. The following identity is true:

duA~ t !u
dt

5(
i

uAi u,

whereAi is the matrix:

Ai51
A11 . . . A1N

. . . . . . . . .

Ai 21,1 . . . Ai 21,N

dAi1

dt
. . .

dAiN

dt

Ai 11,1 . . . Ai 11,N

. . . . . . . . .

AN1 . . . ANN

2 .

SinceuAi u is equal to

uAi u5uAu(
j

dAi j

dt
Ai j

21 ,

we obtain

duAu
dt

5uAu(
i j

dAi j

dt
Ai j

21 .

Using a more condensed notation, this can be written

d

dt
loguAu5TrS A21

dA

dt D . ~A2!

APPENDIX C. FREE ENERGY FOR THE DECOUPLED
CASE

Recall Eqs.~46! and ~47!:

¹jA5

K 1

uZju21/2
~l1kBTD!L

j

K 1

uZju21/2L
j

,

whereD is a vector defined by

Di52(
rl

]@Zj
21# ir

]xl8

]j r

]xl8
1(

j
@Zj

21# i j (
krls

S pjk
pjr

kBT

2@Zj
21#krD ]j r

]xl8

]jk

]xs8

]2j j

]xl8 ]xs8
. ~A3!

We simplify this equation by rearranging the terms.
Expanding the first term of Eq.~A3! and using definition

of Zj from Eq. ~5! we obtain
loaded 23 Nov 2010 to 143.232.215.59. Redistribution subject to AIP licens
s

2(
rl

]@Zj
21# ir

]xl8

]j r

]xl8
5(

jkrl
@Zj

21# i j

]@Zj# jk

]xl8
@Zj

21#kr

]j r

]xl8

5 (
jkrls

@Zj
21# i j S ]j j

]xs8

]2jk

]xs8 ]xl8

1
]2j j

]xs8 ]xl8

]jk

]xs8
D @Zj

21#kr

]j r

]xl8
.

A simplification follows:

Di5(
j

@Zj
21# i j (

krls
S pjk

pjr

kBT

]j r

]xl8

]jk

]xs8

]2j j

]xl8]xs8

2@Zj
21#krS ]j r

]xl8

]jk

]xs8

]2j j

]xl8 ]xs8
2

]j j

]xs8

]2jk

]xs8 ]xl8

]j r

]xl8

2
]2j j

]xs8 ]xl8

]jk

]xs8

]j r

]xl8
D D ,

and this leads to

Di5(
j

@Zj
21# i j (

krls
S pjk

pjr

kBT

]j r

]xl8

]jk

]xs8

]2j j

]xl8 ]xs8

1@Zj
21#kr

]j j

]xs8

]2jk

]xs8 ]xl8

]j r

]xl8
D . ~A4!

The first term of Eq.~A4! can be written in a more
compact form using matrix notation. We denote byH̃j ,

H̃j5Zj
21Jj8Hj~Jj8! tZj

21

@see Eq.~48!#.
Then

(
j

@Zj
21# i j (

krls
S pjk

pjr

]j r

]xl8

]jk

]xs8

]2j j

]xl8 ]xs8
D

5(
j

@Zj
21# i j S S dj

dt D
t

•H̃j•S dj

dt D D . ~A5!

The second term of Eq. A4 is

(
j

@Zj
21# i j (

krls
@Zj

21#kr

]j j

]xs8

]2jk

]xs8 ]xl8

]j r

]xl8

5(
j

@Zj
21# i j (

s

]j j

]xs8
(
kr

@Zj
21#kr(

l

]j r

]xl8

]2jk

]xs8 ]xl8
.

Due to symmetry properties,
e or copyright; see http://jcp.aip.org/about/rights_and_permissions



u
n
a
ar

-

l-

red

l

s

of

9180 J. Chem. Phys., Vol. 115, No. 20, 22 November 2001 E. Darve and A. Pohorille

Down
(
kr

@Zj
21#kr(

l

]j r

]xl8

]2jk

]xs8 ]xl8

5
1

2 (
kr

@Zj
21#kr(

l
S ]j r

]xl8

]2jk

]xs8 ]xl8
1

]2j r

]xs8]xl8

]jk

]xl8
D

5
1

2 (
kr

@Zj
21#kr]s8(

l

]j r

]xl8

]jk

]xl8

5
1

2 (
kr

@Zj
21#kr]s8@Zj#kr

5
1

2
Tr~Zj

21]s8Zj!5
1

2
]s8loguZju,

where]s8 is a short notation for]/]xs8 .
Thus the second term of Eq.~A4! is equal to

1

2 (
j

@Zj
21# i j ~¹8j j•¹8 loguZju! ~A6!

@see Eq.~13! for the notation¹8].
We insert Eqs.~A5! and~A6! into Eq.~A4! to obtain our

final result:

Di5(
j

@Zj
21# i j S 1

kBT S dj

dt D
t

•H̃j•S dj

dt D
1

1

2
¹8j j•¹8 loguZju D . ~A7!

APPENDIX D. IMPLEMENTATION DETAILS FOR
CALCULATING A Õj i

In this section we describe the steps required to comp
]A/]j i using Eq.~50!. We will describe the implementatio
of the method using Eq.~50! because this is the most gener
formula. Eq.~51! for a constrained simulation is a particul
case of Eq.~50! wherej̇50 and Eq.~50! is equivalent to Eq.
~35! in the case of an unconstrained simulation.

Recall that using Eq.~50!, ]A/]j i is obtained by com-
puting the average of

1

uZju1/2S l1(
j

@Zj
21# i j S dj

dt D
t

•H̃j•S dj

dt D1
kBT

2
¹8j j

•Tr~Zj
21¹8Zj! D

divided by the average of 1/uZju1/2. These terms can be com
puted in the following way.

• Compute all nonzero first and second derivatives:

d~i,j!5
]ji

]xj
,

d2~i,j,k!5
]2ji

]xj ]xk
.
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l

• ComputeuZju where@Zj# i j is defined by

@Zj#ij5(
k51

N
1

mk
d~i,k! d~ j,k!.

We denotez5uZju.
• The term¹8j j•Tr(Zj

21¹8Zj) can be expanded as

(
klm

1

mk

]jj

]xk
@Zj

21#lm

]@Zj#lm

]xk
.

The most efficient way to compute this term is as fo
lows.

• Compute (p2 C operations!

v1~ j,l,r!5(
k51

N
1

mk
d~ j,k! d2~l,r,k!.

Recall thatp is the number of coordinatesj i while C is
the minimal number of Cartesian coordinates requi
to define thej i .

• Compute (p2 C operations!

v2~ j,l,m!5(
r51

N
1

mr
@v1~ j,l,r! d~m,r!1v1~ j,m,r! d~l,r!#.

• Compute (p2 operations!

v3~ j!5(
lm

@Zj
21#lm v2~ j,l,m!5¹8jj•Tr~Zj

21¹8Zj!.

• The term (dj/dt) t
•H̃j•(dj/dt) can be efficiently com-

puted in the following manner.

• Compute (p C operations!

w1~i!5(
k51

N

d~i,k!
dxk

dt
.

• Compute (p2 operations!

w2~i!5(
l

@Zj
21#il w1~l!.

• Compute (p C operations!

w3~i!5(
l

w2~l! d~l,i!.

• Compute (C 2 operations!

w4~ j!5(
rs

1

mr ms
w3~r! w3~s! d2~ j,r,s!5Sdj

dtD
t

•H̃j•S dj

dt D .

• The coefficient l can be computed by traditiona
means, for example usingRATTLE.

• The final expression for]A/]j i now reads

].A

]ji
5

K 1

Az
S l1(

j
@Zj

21# i j S w4~ j !1
kBT

2
v3~ j !D L

j

S 1

Az
D

j

.

APPENDIX E. CONSTRUCTION OF THE BASIS q

In this section we discuss the construction of a basiq
such that Eq.~10! is satisfied.

Let us consider a vectorj* 5(j1* , . . . ,jp* ). The surface
j1(x)5j1* , . . . , jp(x)5jp* is denoted byS* . Let a be a
point on S* . We start by proving that there exists a set
e or copyright; see http://jcp.aip.org/about/rights_and_permissions
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functionsr 1 , . . . ,r N2p such thatj1 , . . . ,jp ,r 1 , . . . ,r N2p is
a local coordinate chart arounda. Consider the natural basi
x1 , . . . ,xN of RN, the set of all orderedN-tuples of real
numbers. We make the assumption that the matrixZj is in-
vertible. This means in particular that¹j1 , . . . ,¹jp spans a
p-dimensional subspace ofRN. At point a, there existsN
2p vectors among¹x1 , . . . ,¹xN such that together with
¹j1 , . . . ,¹jp they form a basis ofRN. Suppose that thes
N2p vectors are¹x1 , . . . ,¹xN2p . Now consider the fol-
lowing map:

F:~x1 , . . . ,xN!→~j1 , . . . ,jp ,x1 , . . . ,xN2p!.

We recall the inverse function theorem:
Theorem 1 „Inverse function theorem…: Suppose that

M and N are both n-dimensional smooth manifolds, a
f :M→N is a smooth map. If at point aPM , the tangent map
f * :Ta(M )→Tf (a)(N) is an isomorphism, then there exists
neighborhood U of a in M such that V5 f (U) is a neighbor-
hood of f(a) in N and fuU :U→V is a diffeomorphism.~See
Ref. 41 page 18 for example.!

Since det(]Fi /]xj )uxÞ0, the functions
(j1 , . . . ,jp ,x1 , . . . ,xN2p) form a local coordinate chart b
the inverse function theorem.

We now construct the functionsq in a neighborhood of
a. We consider the following modification ofxi :

qi5xi1(
j

l i j ~j j2j j* !.

Then

¹qi5¹xi1(
j

l i j ¹j j ~A8!

on the surfaceS* . After multiplying by (1/mk)(]j l /]xk),
we have

(
k

1

mk

]qi

]xk

]j l

]xk
5

1

mi

]j l

]xi
1(

j
l i j (

k

1

mk

]j l

]xk

]j j

]xk
.

Denoting byVq andVx the matrices

@Vq# i l 5(
k

1

mk

]qi

]xk

]j l

]xk
@Vx# i l 5

1

mi

]j l

]xi

and given the definition Eq.~5! of Zj we obtain

Vq5Vx1l•Zj ,

where• denotes a matrix product.
Therefore if we choose

l52Vx•Zj
21,

which is always possible asZj is invertible, we have

@Vq# i l 5(
k

1

mk

]qi

]xk

]j l

]xk
50

for all i and l. The functionsq satisfy Eq.~10!. Moreover,
since det(]Fi /]xj )uxÞ0, we also have that

G:~x1 , . . . ,xN!→~j1 , . . . ,jp ,q1 , . . . ,qN2p!
loaded 23 Nov 2010 to 143.232.215.59. Redistribution subject to AIP licens
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satisfies det(]Gi /]xj )uxÞ0 since¹qi satisfies Eq.~A8!. By
the inverse function theorem, (j1 , . . . ,jp ,q1 , . . . ,qN2p) is
a local coordinate chart arounda.

The reader may be interested to know under which c
dition the previous result can be extended to the existenc
functionsq such that

• (j1 , . . . ,jp ,q1 , . . . ,qN2p) is a local coordinate char
arounda.

• Zqj(j,q)50 in a neighborhood ofa.

Previously we required thatZqj(j,q)50 is true only on sur-
faceS* while now we wantZqj(j,q) to be equal to 0 in a
neighborhood ofa. This problem has an elegant solution b
means of the Frobenius theorem. To state this theorem
need to introduce some new definitions. LetM be a mani-
fold. We denoteTa the tangent vector space ofM at pointa.
We denoteCa

` the set of all functions for which partial de
rivatives of arbitrary order exist in a neighborhood ofa. For
XPTa and f PCa

` we denoteX f the directional derivative of
f along the vectorX. See Ref. 41 page 16 for a more com
plete definition. Given a tangent vector fieldX on M and a
function f PC`(M ) we can define a real-valued function o
M by

~X f !a5
def

Xaf ,

where Xa denotes the value ofX at point a. We are now
ready to define the Poisson bracket product of two tang
vector fieldsX andY:

@X,Y#5
def

XY2YX,

that is

@X,Y#~ f !5X~Y f!2Y~X f !.

See Ref. 41 page 31 for details.
Suppose that we haveh smooth tangent vector fieldsX1 ,

. . . , Xh . We define anh-dimensional smooth distribution o
M, Lh, by assigning at each pointa the h-dimensional sub-
space ofTa spanned byX1(a), . . . , Xh(a). We denote

Lh5$X1 , . . . ,Xh%.

The Frobenius theorem can be stated as:
Theorem 2 „Frobenius theorem…: Suppose Lh

5$X1 , . . . ,Xh% is an h-dimensional distribution in an ope
set U containing point a. A necessary and sufficient condit
for the existence of a local coordinate system(W;wi), such
that W,U is a neighborhood of a and

Lh5H ]

]w1
, . . . ,

]

]whJ
is that @Xi ,Xj # is a linear combination of Xk , k51, . . . ,h
for all i and j, inside some neighborhood V,U of a. This
condition is also known as Frobenius condition.~See Ref. 41
page 35!.

Our result is a corollary of this theorem. First suppo
that there existsq such that

Zqj~j,q!50
e or copyright; see http://jcp.aip.org/about/rights_and_permissions
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in a neighborhood ofa. For basis (j,q), we have that]/]j i

is orthogonal to¹qj . On one hand, thep tangent vectors
]/]j i form an independent set and are orthogonal to¹qj for
all j. On the other hand, thep vectors 1/mi ¹j i are necessar
ily independent asZj is invertible. They are also orthogona
to ¹qj for all j. Therefore, the subspace spanned by]/]j1 ,
. . . , ]/]jp is equal to the subspace spanned by (1/m1)¹j1 ,
. . . , (1/mp)¹jp . As a consequence of the Frobenius the
rem, the vectors (1/m1)¹j1 , . . . , (1/mp)¹jp must satisfy
the Frobenius condition. In this particular case, this condit
is that Hi¹8j j2Hj¹8j i is a linear combination of¹8j1 ,
. . . , ¹8jp , whereHi is the modified Hessian matrix from
Eq. ~15!.

On the other hand, suppose thatHi¹8j j2Hj¹8j i is a
linear combination of

¹8j1 , . . . ,¹8jp

in a neighborhood ofa. The distribution

Lp5H 1

m1
¹j1 , . . . ,

1

mp
¹jpJ

satisfies the Frobenius condition. Thanks to the Froben
theorem, there exists a local coordinate systemwi such that

Lp5H ]

]w1
, . . . ,

]

]wpJ .

The gradient ofwi , i>p11, is necessarily orthogonal t
each]/]wj , j <p. Therefore it is orthogonal to (1/mj )¹j j

for all 1< j <p, which proves that

q15wp11, . . . ,qN2p5wN

is such thatZqj50 in a neighborhood ofa. There remains to
prove that (j,q) is a local coordinate chart. AsZj is invert-
ible the vectors¹j i are linearly independent. Suppose th
that there existsi such that¹j i is a linear combination of
¹qj , j 51, . . . , N2p. We can assume thati 51 and then
there existl j such that

¹j15(
j

l j¹qj .

Therefore the first line and column ofZj is equal to 0 which
is a contradiction sinceZj was assumed to be invertible
Considering

FIG. 3. Illustration of the Frobenius theorem for the construction of fu
tions q satisfyingZjq50 in a neighborhood of a given pointa.
loaded 23 Nov 2010 to 143.232.215.59. Redistribution subject to AIP licens
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G:~x1 , . . . ,xN!→~j1 , . . . ,jp ,q1 , . . . ,qN2p!

we have proved that det(]Gi /]xj )uxÞ0 and thus (j,q) is a
local coordinate chart by the inverse function theorem.

We have proved that the existence ofq such that (j,q) is
a local coordinate chart andZqj50 in a neighborhood ofa is
equivalent to the Frobenius condition:

Hi¹8j j2Hj¹8j i

is a linear combination of

¹8j1 , . . . ,¹8jp

for all i and j.
The Frobenius condition may appear a little special.

illustrate its necessity in a more intuitive manner. Suppo
thatj does not satisfy the Frobenius condition at pointa and
that there exists a set of functionsq such thatZjq50 and
(j,q) is a local coordinate chart. We show that this leads
a contradiction. It can be proved that ifj does not satisfy the
Frobenius condition at pointa5(j* ,qa), then there exists a
pathg such that

g~0!5~j* ,qa!,

g~1!5~j* ,q8! with q8Þqa,

dg

dt
PH 1

m1
¹j1 , . . . ,

1

mp
¹jpJ .

As q8Þqa there exists i such that qi8Þqi
a . Consider

qi(g(t)). Since

dg

dt
PH 1

m1
¹j1 , . . . ,

1

mp
¹jpJ

the function

dqi~g~ t !!

dt
5¹qi•

dg

dt

must be equal to zero asZjq50. Therefore

qi~g~ t !!5qi~g~0!!5qi
a

must be equal toqi(g(1))5qi8 which is a contradiction. This
is illustrated by Fig. 3.
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