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INTRODUCTION

Most modern aircraft achieve optimum cruise performance and maneuvera-
"bility when flying at high subsonic Mach numbers in the transonic regime. In
this Mach number range, there exist in the flow field local regions of super-
sonic flow which are usually terminated by weak embedded shock waves. These
mixed subsonic-supersonic flows are extremely sensitive to the shape of
internal boundaries. For this reason aircraft performance depends strongly
on aircraft configuration. The configuration design process requires para-
metric variation of the numerous geometrical variables that describe the
shape of the aircraft, a procedure that is expensive to implement entirely by
experiment. This fact has resulted in a significant effort to develop theo-
retical transonic flow analysis methods.

:*'•>' ' ' • • ' • ' . ,
These theoretical techniques can be divided into two categories: (1)

analytical methods and (2) numerical methods. The analytical approach is
limited, in the general case, to linear theory, while most transonic flows of
interest are governed by nonlinear equations of motion. The numerical .
approach, however, has no such limitation.. .-•'*;•:•

The present work describes a relaxation procedure for solving the tran-
sonic small disturbance equation for flows about wings and wing-fuselage
combinations. The numerical method is based on the well-known relaxation
method of Murman and Cole' (ref. 1) and is a continuation of the work given
by Ballhaus and Bailey (refs. 2 and 3; see also ref. 4). The small distur-
bance formulation is chosen because of the relatively simple manner in which
the wing boundary condition is imposed. All the transonic relaxation methods
for wings that have been developed to date (refs. 2 to 10)'are based on the
small disturbance approach, with the exception of Jameson's (ref. 11) method
for yawed wings. In the present method, solutions are obtained over a se-
quence of successively refined computational grids with the final result ob-
tained for a grid with about 10^ points. The solution process requires about
5 to 15 min of run time on a Control Data Corporation (CDC) 7600 computer.

An.early version of the isolated wing code was released to aircraft and
research companies in 1974. Since that time, in a contracted effort with
LTV Aerospace Corporation, the input, setup, and output have been streamlined
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and adapted more toward the needs of the aircraft designer. The code has
been documented and adapted for use on the CDC 6600 computer (ref. 12).
The solution process has also been revised to decrease computer run time and
to allow, as an option, either conservative or nonconservative differencing.
The use of conservative differencing ensures that captured shock waves
satisfy the shock conditions contained in the inviscid governing equation.
Such is not the case for nonconservative differencing which, coincidentally,
captures shock waves that agree better with experimentally measured shock :
waves which, of course, are affected by viscosity. (See ref. 13, fig. 6.)
Computed surface pressures for both conservative and nonconservative differ-
encing are compared with experimental pressures in the section on results.

Finally, the method has been extended for the treatment of wings mounted
on finite length fuselages. Results, both conservative and nonconservative,
are compared with experimental data for two such nonlifting configurations.

FINITE-DIFFERENCE APPROXIMATIONS

Governing. Equation
'* - '-• • • . • ' . .

The approximate* equation and boundary conditions for transonic flow over
slender body, thin wing configurations, such as shown in figure 1, are
derived from transonic small disturbance theory under the assumptions of
small flow deflections and a free-stream Mach number near unity. The govern-
ing equation is . '

= 0 (1)

where <f> is the disturbance velocity potential, M^ is the freer-stream Mach
number, and y is the ratio of specific heats. The parameter n reflects
the nonuniquehess of equation (1), and it can be adjusted to better approxi-
mate the exact sonic pressure coefficient. For example, see reference 14.

Murman'(ref. 15) has shown that the shock jump relation implied by equa-
tion (1) is contained in the difference approximations if they are written in
conservation form. That is, mass fluxes at cell boundaries interior to the
computation mesh cancel identically. The present conservative finite dif-
ference equation is derived by applying the divergence theorem to the integral
of equation (l)(the transonic approximation to mass conservation) over an
elemental, rectangular, computation volume or cell as shown in figure 2.
Define the mass flux as

' *= f *X + g*y + hlZ

- [u - T®)*x-^>c*e ix + kl Vk R <«•
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Applying the divergence theorem to the .volume integral and dividing by, the
cell volume results in the difference expression

i+l/2>jtk , (

*i+l/2 xi-l/2! '- y
, t

hl,jtk-l/2

j+1/2 yj-l/2 Zk+l/2 zk-l/2

for the point (x.,y.,z ). If the velocities are defined by1 J K - -. .

. ...- • ' • ( * > . •.*i+i»'3>fc.3-%.i;>.t.t' - .
x i+1/2,j,k Xjl1 Xj

(3)

, etc.

the finite difference approximations to the fluxes are

• J^k

1 -Ji--L/2,j,

> (4)

'i,j+1/2,k (5)

(6)

which, when substituted into equation (3) and factored, give the final dif- I
ference approximation
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where
• " • • • ' . n ;
(1 - M2)., . . - 1 - M2 - (y + 1) M" if?4>

ij'k " - 2lV

[0 for (1 -M2) > 0

The switching parameter Ui,j,k gives the flux in the x-directlon by a cen-
tral difference operator in elliptic regions (Pi-ifj,k

 = 0» W± j fc = 0) an<^
by a central operator shifted upstream one mesh point in hyperbolic regions
(Hi-l̂ jjk = 1, W± j,k = 1) and thereby prevents upstream signal propagation.
For evenly spaced meshes equation (7) is formally second order accurate in
elliptic regions and first order in hyperbolic regions.

In addition to the elliptic and hyperbolic operators, equation (7) also
contains the parabolic (v±-i j k = 0» I1! j k= ^ an<* shock point
(Pj.-l 1 k ° ^»' wi .j- k *" ^^ operators and) for evenly spaced meshes, is the
three-aimensional equivalent of Murman's fully conservative relaxation (FCR)
method (ref. 15). In the unequally spaced mesh case (both two and three
dimensions), however, the first term of equation (7) differs by a factor of
*i — xi-2- — - in hyperbolic regions because the mesh cells are centered about

the point (i,j,k) in all flow regions. Consistency of the difference approxi-
mation is demonstrated for smoothly varying meshes by the expansion

xi - xi-2 •• . :

-
_ _

where C(x) is the inverse of the implied stretching function, that is, A£..-
is uniform, and the primes denote derivatives.

A majority of 2-D transonic calculations and all reported 3-D calcula-
tions have been performed by use of nonconservative relaxation (NCR) methods.
In -the absence of viscosity corrections, the NCR solutions generally agree
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better with experimental pressure measurements than the FCR results. This is ;
because mass sources result from the failure of the NCR methods to cancel :,
fluxes at shock points, where x-differences shift from upwind to centered
(ref. 15). The source strengths do not vanish with vanishing mesh spacing,
and they reduce the computed shock strengths to values nearly equal to those,"
obtained experimentally, which are, of course, weakened by the interaction ofr
the shock and boundary layer.

\
Two NCR methods are contained in equation (7). . The first, that due to

Murman and Cole (ref. 1), is obtained by setting

•1 ̂ 1 T K ^ ^ l f
•*• •L9j»R- -"-jjj1^

except at the expansion sonic line, and the second, that due to Garabedian and
Korn (ref. 16), is obtained by setting ' ._.

fu - *£;

Wing Boundary Conditions

For a wing whose surface is given by f(x,y,z) = 0 and which is at angle
of attack a,., the linearized boundary condition is

- : - f + (<J> + o)f . = 0 '.'". . (13)
X • Z Z -' • '

' c .. < . '
This equation is applied on the wing mean plane midway between mesh planes by
expressing the vertical derivative at the mesh plane adjacent to the upper :
surface as

/ Yv 2 I 4>i i k+1 — ^i T k f/fv\ 1)U } =~ { iyJ?**1 iiizi + |_i) +a( (14a)v zz;i,j,k . zk+i - zk-i;l Zk+i - zk ;[\f«./u - J(_., ;.
and the lower surface as .

_0 'l$1 4 lr ~ $4 4 U_1 l/f«\ II .

(14b)

The Kutta condition requires that the pressure (<(>x) be continuous at the
trailing edge. This fixes the.section circulation T^, which is equal to the
difference in potential at the section trailing edge linearly extrapolated
from points above and below. The potential jumps are convected downstream
along straight lines to form the trailing-vortex sheet, across which both
pressure and downwash (<J>Z) are continuous. The potential jump through the
sheet is taken into account in the <^^ difference formula at the plane
above by replacing ^i^j^-l with "^i j f k-1

 + rj .and'at the plane below'by
replacing 'J'i.j.k+l with 4>i,j,k+l — r j. Note that no points lie on the
sheet, as in the original method (ref. 2). The present technique simplifies
the coding with no significant loss in accuracy.
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Fuselage Boundary Condition
*

In the present method the fuselage is treated in a rectangular mesh sys-
tem. A similar two-dimensional procedure, which appears to be extendable to
three dimensions, has been demonstrated for subsonic flow in reference 17. In
the-present method a simplified approach suggested by Allen Chen of the Boeing
Co. is used in which the mesh is constructed so that points lie reasonably
close to the fuselage surface, such as shown in figure 3. Points may lie
either inside or outside the fuselage boundary. For a configuration
described by f(x,y,z) = 0, the small-disturbance boundary condition becomes

f + < J > f + < } > f =0 (15)
x y y z z

By substituting three point-extrapolated differences at the boundary point
i,j,k (for the upper surface, say) of the form

-,j,k = Al *itj'k + ̂  *i'3-1»k + ̂  *4»J-2»k <16a>

and

î.j.k = Bl'*i.J'k + BZ VJ'1*-1 + *3 ̂.J.*-2 <16b>

into equation (15), the expression for the boundary potential is found as

i,:J,k-

' • • ' - . - . ; F a r Field

The condition applied at the outer boundary of the computational domain
is given by the superposition of the asymptotic far-field solutions for .wings
derived by Klunker (ref. 18), and bodies of revolution derived by Krupp and
Murman (ref. 19). At the downstream boundary, however, the lift contribution
is obtained by the numerical solution to the cross-flow equation.

Nonrectangular Wing Transformation

'The isqlated wing code treats a swept and tapered wing by mapping the
wing into a rectangle by the transformation

'

z

y <18)
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where XLE anc^ XTE are fc^e x~coor<iinates of the leading and trailing edges.
The divergence form of equation (1) becomes

r ' ' , h , J
*l + 5 (S*C + *n)

• X I t

The conservative difference approximation of equation (19) is derived in the
manner previously outlined and is given as

)(i-M2)

i-l 1 k ~ i-l 1 k —i l.j.k i l.j.k x C . - j . k x 5 1.3/2fj,k

(ft

(20)
- ' " . "

where

_ 1 [ *i+l.j+l.k~*i+l..1-l.k , ̂i.j+l.k'^i.j-Ukl et<.

j,k 2L Vi~Vi Vi ~ nj-i J'
Note that equation (20) maintains the proper domain of dependence in hyper-
bolic regions by upwind differencing only the contribution from the
x-direction (i.e., terms multiplied by (1 — Mi j fc) and Vi-l,-]^) wnile the
others remain centrally differenced.

In transformed coordinates the wing surface and vortex sheet conditions
are unaltered. However, the boundary condition at the wing root becomes

1219



and is substituted into equation (20) at the root.

Relaxation. Scheme

The solution of the difference equations is obtained by a vertical-
column relaxation scheme. A number of variations of the method have been
coded, and in what follows, we outline the scheme that we believe has the
best stability properties.

Following Jameson (ref. 20), the iterations are viewed as steps in '
pseudo-time. The combination of new (4>+) and old (<J>) values in the dif-
ference operators is chosen so that the related time-dependent equation
represents a properly posed problem whose steady-state solution approaches
that of the steady equation. In addition, the linearized algorithm is
required to satisfy the von Neumann stability criterion.

For ease of discussion, consider an evenly spaced rectangular mesh with
M+l = xi + Ax, etc. The relaxation equation for elliptic regions.
and U i - i k = 0) is written

(22)

where ' 'u is an bverrelaxation parameter (1 < u < 2) and M^ j ̂  is evalu-
ated from old values. Note that only the contribution from tne'x-direction
Is overrelaxed. This avoids an abrupt change in the diagonal term as the
solution crosses the sonic surface suggested by J. C. South and P. A. Newman
of the Langley Research Center. .. .

In hyperbolic regions the relaxation equation is

»i,j,k
)'/(ax>
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It is of interest to look at the equivalent time -dependent .equation

(M2 - 1)<J) -$ -> +"2(M2 - 1) 7- 4 fc + 7- <J> =0 (24)rxx ryy Yzz • . • Ax xt Ay Yyt v , '

inferred from equation (23). It can be shown that the condition

must hold for x to be the hyperbolic marching direction. To keep x the
marching direction and to improve stability near sonic points, it may be
necessary to add to equation (23) the quantity .

where

-.-• tx- *« = '(*i,j,k-
and e is a chosen parameter.

RESULTS

In this section we discuss comparisons between present computed results,
other theoretical solutions, and experimental data. Before beginning, how-
ever, we wish to point out the difficulties associated with comparing com-
puted solutions with experiment. It is well known that viscous effects play
a large role in determining surface pressure distributions in many transonic
flows. This is particularly true in lifting cases (ref. 21) and when embedded
shock waves, occur. .(See ref. 13, fig. -6.) Since the present method is entirely
inviscid, considerable disagreement with data is encountered where viscous .
effects are significant. Furthermore, wind-tunnel results are often affected
by interference from the tunnel walls. Although attempts are made to correct
for interference effects, the corrected free-stream Mach number and angle of
attack do not always closely correspond to. free-air values. Also, as the
free-stream Mach number approaches one, the wall effects on the sonic bubble '
and shock locations become even more significant and difficult to assess.

Violation of the small-disturbance assumption can also cause significant
departures from the correct inviscid free-air solution. The assumption of
small flow deflection is seriously violated near blunt leading edges and at
high angles of attack. Thus, errone.ous results can be obtained in the
leading-edge region. Also, the small-disturbance theory predicts shock pres-
sure jumps.. that become significantly stronger than the Rankine-Hugoniot value
as the shock Mach number increases past about 1.3. Finally, the predictions
for oblique shock waves also depart significantly from the exact values for
shock wave angles in excess of about 20° (ref. 13).
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We begin by considering comparisons for two isolated wings. The first,
shown in figure 4, is for computed and experimental pressures furnished by
M. G. Hall of the RAE on the RAE Wing C at M = 0.95 and a = 0° which was
tested in the RAE 8 ft x 6 ft transonic tunnel "at Re-.= 1.4 * 106. The
computed results, which were obtained on a 51 * 34x48 °(x,y,z) grid, show
generally good agreement with the experimental pressures, with some overex-
pansion near the leading edge at the root. The NCR and FCR solutions were-
virtually the same because of the absence of shock waves.

The second comparison, in figures 5 and 6, is for the ONERA M6 wing.
The experimental data were obtained in the ONERA S2 transonic tunnel at Rg- *
2.5 x 106 (ref. 22). Computations were performed on a sequence of three
grids (35x20x24, 45x23x30, 66x37x32), using both the NCR and FCR
methods, and required approximately 5 CPU minutes on the CDC 7600 computer
utilizing the RUN 76 compiler. Figure 5 shows comparisons between the
computed and measured pressures for M = .84 and a = 3*. The NCR results are
very similar to those reported in reference 5. The FCR method predicts a
slightly downstream shift in shock location, as expected from Murman's two-
dimensional computations (ref. 15). Although the experimental pressures show
evidence of both a forward and an aft shock wave, the calculations show clear
evidence of only the aft shock. This is not surprising, because it has been
shown in reference 13 that the small-disturbance equation (used here and in
ref. 5) is a poor approximation to the full potential equation for shocks with
sweep angles greater than about 20°. The experimental forward shock is swept
at about 36° over most of its length. The agreement claimed in reference 5
between computed and experimental forward shock locations is not evident in
the comparison of experimental and computed section pressures. It appears
that the small-disturbance approach can, however; be modified to properly
treat swept shock waves by retaining two additional terms in the governing
equation. (See ref. 13.) Work in this area is currently being pursued.

Figure 6 shows pressure comparisons for M = .92 and a =3°. Here the-
aft shock prediction from the FCR method is significantly downstream of that
predicted by the NCR method. The NCR result, with the weaker shock; gener-
ally agrees better with the data but is still in serious disagreement..
Neither method captures the forward shock, which is clearly evident in the
experimental data at the three outboard span stations. The disagreement in
upper surface, aft shock, and lower surface shock locations can probably be
attributed primarily to the decrease in wing lift caused by trailing-edge
viscous effects. This moves the upper shock upstream and the lower one
downstream. "•''• ' . < • • . . . , • .,»,-, .,,,-, ;.t ..

We now turn bur attention to comparisons of computed and experimental
pressures for a parabolic-arc body with sting, shown in figure 7, and wing-
fuselage configurations, shown in figures 8 to 10. The present results are
obtained by use of equation (17) as the body boundary condition. Figure 7
shows pressures at the body surface and in the flow field at two body
diameters from the centerline for M^ = .99. Good agreement is shown between
the present NCR calculation (41x 40 x'AO), an axisymmetric NCR calculation
(ref. 23), and measured pressures (ref. 24). The x-mesh spacing used in the
present calculation is 2.5 times coarser than that used in the axisymmetric
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one, and accounts for the difference in shock resolution. The discrepan-
cies in the pressures are primarily attributed to the mesh coarseness and the
lack of boundary definition near the body nose. Figure 8 compares NCR, FCR,
linear theory-(ref. 25)', and experimental^ pressures (ref. 25) for a Sears-
Haack fuselage rectangular-wing combination at M^ = .90 and a = 0°. The
data were obtained in the AEDC 16 ft wind tunnel at Re- = 3.0 * 106 (ref. 26)
The present results were obtained on a 57 x 35 x 30 grid.0 The pressure plots
at the top of the body show that the present results overexpand near the nose
compared with linear theory, as was noted in the previous example. As usual,
the FCR-predicted shock location is aft of the NCR prediction, whereas linear
theory shows no shock. Comparison with experiment is good although the
sparseness .of the data points precludes the accurate determination of the
experimental shock location. A comparison is also shown at mid semispan.
The interesting result here is that the experimental shock location is down-
stream of the computed locations. In figure 9 the mid-semispan solution is
compared with an isolated wing calculation (ref. 25) from the Jameson 3-D
program and data. The present results and those of Jameson compare favorably,
particularly when the coarseness of the mesh used in the present calculation
is considered. The disagreement between the computations and experiment does
not appear to be caused by viscous effects, which generally move shocks
upstream in such nonlifting cases. More likely the disagreement is caused by
the test Mach number being slightly higher than .90.

Finally, figure 10 compares NCR calculated and experimental pressures
for a swept wing-fuselage configuration at M = .93 and a = 0°. The computed
results were obtained using, a.Cartesian grid (81 x 59 x 27) for the wing as
well as:the fuselage. The first x-mesh point at the wing leading edge was
fixed at 2.5 percent chord with 23 mesh points along the root chord and 11
along the tip chord, distributed according to the methods used in references
3 and 5. The uncorrected experimental data were obtained in the Langley
8-ft tunnel (solid wall) at Rej = 2.0X 106 (ref. 27). The agreement with
experiment on the fuselage centerlirie and the two inboard panels is good. In
the computed results, the wing root shock propagates laterally to y/b = .60,
but the experimental shock dissipates before reaching this point. The source
of the disagreement is not clear but perhaps is a viscous effect.

Clearly, the computed results lack sufficient leading-edge expansion at
the outboard span stations y/b = .80 and y/b = .95, an effect that is
caused by the coarse x mesh (about 12 points per chord) there. The Carte-
sian grid approach requires too many mesh points to obtain the required
resolution near the leading edge. The calculation should be improved sig-
nificantly by the use of the planform transformation, which was described
previously .in the treatment of isolated wings.

CONCLUDING REMARKS

A relaxation method has been developed which allows as an option either
fully conservative (FCR) or nonconservative (NCR) differencing. The three-
dimensional FCR and NCR solutions exhibit properties similar to those
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reported by Murman for two-dimensional flow. That is, for weak shock waves
there is little difference; as the shock strength increases, the FCR shock
wave becomes stronger than the NCR shock wave and, consequently, is located
further downstream. The NCR solutions correlate better with experimental
pressures, but it is anticipated that the FCR method will prove superior when
viscous effects are properly accounted for.

Clearly, the present solutions do not agree well with data in all cases,
particularly when (1) there is extensive separation either at the shock or
trailing edge, and when (2) there are highly swept shock waves embedded in
the flow. The treatment of highly swept shocks should be improved by
retaining two additional terms in the governing equation, as suggested in
reference 13, or by solution of the full potential equations.

In flows about wing-fuselage configurations, the basic idea is to. treat
the fuselage with accuracy sufficient to obtain its effect on the wing with-
out the use of complicated fuselage transformations. The present results are
encouraging and felt to be quite good when the simple boundary approximations
used are considered. The extension to lifting wing-fuselage configurations,
is straightforward and work in this area is being pursued.
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Figure 1.— Coordinate system.

V/2,],k
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Figure 2.- Computational volume. Figure 3.- Body boundary points.
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Figure 4.- Comparison of computed and experimental pressure coefficients Cp
for the RAE wing C. Moo = 0.95; a = 0°; TR denotes taper ratio; and
AR denotes aspect ratio.
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Figure 5.- Comparison of computed and experimental (ref. 22) pressure coef-
ficients Cp for the ONERA M6 wing. MCO = 0.84; a = 3°.
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Figure 6.- Comparison of computed and experimental (ref. 22) pressure coefr
ficients Cp for the ONERA M6 wing, M^ = 0,92; a = 3°,
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Figure 7.- Comparison with computed .(ref. 23) and experimental (ref. 24)
pressure coefficients Cp for a parabolic arc of revolution. Fineness
ratio, 10; M^, = 0.99.
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Figure 8.- Comparison with computed (ref. 25) and experimental (ref. 26)
pressure coefficients Cp for a rectangular-wing—fuselage configura-
tion. M = 0.90; a = 0°.
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Figure 9.- Comparison of computed small disturbance and full potential
(ref. 25) pressure coefficients Cp with experiment (ref. 26) at mid-
semispan location.
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Figure 10.- Comparison of computed and experimental (ref. 27) pressure coef-
ficients Cp for swept-wing—fuselage configuration. M^ = 0.93; a = 0°.
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