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SUMMARY

The unsteady, three-dimensional flow field resulting from the interac-
tion of a plane shock with a cone-shaped vehicle traveling supersonically is
determined using a second-order, shock-capturing, finite-difference approach.
The time-dependent, inviscid gas dynamic equations are transformed to include
the self-similar property of the flow, to align various coordinate surfaces
with known shock waves, and to cluster points in the vicinity of the inter-
section of the transmitted incident shock and the surface of the vehicle.
The governing partial differential equations in conservation-law form are
then solved iteratively using MacCormack's algorithm.

The computer simulation of this problem, compared with its experimental
counterpart, is relatively easy to model and results in a complete descrip-
tion of the flow field including the peak surface pressure. The numerical
solution with its complicated wave structure compares favorably with avail- •
able Schlieren photographs, arid the predicted peak surface pressures obtained
are shown to agree better with the experimental data than existing ',
approximate theories.

INTRODUCTION

For over a decade, experimentalists and theoreticians have studied the
flow field generated by the interaction of an incident shock wave (e.g., that
generated by a nuclear explosion) with a vehicle traveling at supersonic
speeds (see Fig. l(a)). In the past, a great deal of attention.focused on
determining the strong-blast-induced transient pulse produced at the surface
of the vehicle because of the belief that the forces generated might be
structurally damaging. Recently, however, a new.question-has emerged con-
cerning weak incident shocks (PS/PI < 2); i.e., can such an encounter induce
high-frequency disturbances capable of destroying the internal structure or
appended equipment? The purpose of this paper is to compute the flow field
generated by such an encounter and thus predict the resulting transient sur-
face pressures required by the designer to determine the structural and
vibrational responses of the vehicle.

Presented as Paper 75-46 at the AIAA 13th Aerospace Sciences Meeting,
Pasadena, Calif., January 20-22, 1975.
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A typical flow field resulting from the interaction of a planar shock at
Mach number M^ and inclination A, and a pointed cone with half-angle o '• "1
at Mach number Mv and angle .of attack 'a is shown in Fig. l(b).' It'' • ' *
consists of a multitude of shock waves and slip surfaces which' interact' to •";i-
yield a rather complicated three-dimensional, unsteady flow field. ' To the '•"•
right of the incident shock, there exists a conical flow field generated by
the vehicle in the free stream or preblast conditions, while to the left of
the indicated sonic line there exists a second conical flow field generated
by the body traveling in the postblast environment. Both conical flow ';'
solutions can be generated from existing three-.dimensional, supersonic, : .
steady flow computer .codes.1 The'region between these two flows which con-'
tains the intricate shock structure is the crux of the present problem and is
determined here. . • •>

The region of the shock-on-shock flow field of most interest to the
.vehicle designer .is where the transmitted incident shock strikes the body,
for it .is the circumferential variation of the .flow variables behind this,
impingement line/that can generate the undesirable forces. The transmitted
shock at the body, depending on its inclination, can transit from a Mach
reflection on, the lower surface or leeward side to a regular reflection .on
the top surface or windward side, or result in a Mach reflection entirely
around the body. Most of the interest and recent experimental testing cen-
ters around the incident shock, inclination angle that yields transition f r'om •
regular to Mach reflection in the windward plane. This encounter angle is
believed to .result in the largest or "peak" surface pressure. Therefore,
only values of the incident shock inclination near transition are considered
here; thus such possibilities as the broadside encounter are-ruled but.

In the past, there have been numerous theoretical attempts (refs. 1' to 9)
to obtain solution's for the three-dimensional, .shock-on-shock (TDSOS)-
problem, some "of which have resulted in computer programs (refs. 6, 9 to 14).
This paper does not try to summarize them by commenting on the relative
merits of shortcomings of each, rather -the reader is referred to papers by
Aiello (ref. 15), and Kutler, Sakell, and Aiello (ref. 9) for brief summaries
of some of the existing theories. In general,-, most of the early theories
required assumptions regarding the position and structure of the existing
shock waves"for their model. Consequently, an incorrect assumption of the
shock structure.cpuld invalidate-the resulting,theory. A big disadvantage of
the approximate techniques that exist'today for solving the TDSOS problem is
that,. in/most '.of "them, both the "'radial and circumferential gradients''of 'the
flow field are neglected. These gradients affect the'positioh and in-
clination of the transmitted incident shock as.it strikes the body and can
therefore gravely affect shock transition and .the: predicted peak'surface ;
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pressure. Compared to available experimental data, all of the approximate
theories grossly over-predict the value of the peak surface pressure. This
over-prediction generated concern from the missile maker and le<i to' a rather ^
exhaustive and expensive experimental study.

There have been many experimental investigations (refs. 16 to 22) of the
TDSOS problem in the past resulting in some very good Schlieren photographs
of the interaction shock structure and surface pressure distributions. The
most recent experimental testing (refs. 23 and 24) was performed at Holloman
Air Force Base by using a rocket-propelled sled. The earlier studies involved
relatively .strong incident shocks while the latest tests dealt mainly with
the weaker blast waves because of their greater probability of occurrence.
The numerical results presented later are compared with both the earlier and
most recent experimental data.

The approach used here to solve the TDSOS problem parallels that of the
two-dimensional procedure (ref. 9) in which the shock-capturing technique '
(SCT) was employed. The self-similarity of the problem, which results from
the absence of a characteristic length associated with the planar incident
shock or the vehicle itself, is used to transform the three-dimensional
unsteady problem to an equivalent steady flow problem. The resulting set of
partial differential equations is of mixed elliptic-hyperbolic type, but is
made totally hyperbolic by reintroducing the unsteady term. With correct
application of the appropriate boundary conditions, the governing equations
can be solved iteratively as a mixed initial boundary value problem using
existing explicit, finite-difference algorithms.

The TDSOS procedure developed here properly accounts for both the radial
and circumferential gradients generated by the conical flow solutions and
results in a complete description of the entire flow field including the
shock structure and surface pressure distribution. Unlike the experimental
counterpart, a typical numerical solution is quite inexpensive and requires
approximately 18 min of CDC 7600 computer time.

•:; GOVERNING EQUATIONS

In extending the two-dimensional problem (ref. 9) to three dimensions,
a cylindrical coordinate system (t,z,r,<(>) is selected with the origin
located at the vertex of the cone and <f> measured from the lower'plane of
symmetry (see Fig. 2). The inclination X of the incident shock is
measured with respect to a plane perpendicular to the axis of the cone.
In following the idea of aligning the coordinates with the position of
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shock waves (refs. 25 and 9) to reduce the postcursor and precursor oscilla-
tions associated with the shock-capturing technique, an independent variable
transformation is performed.. The -longitudinal coordinate - z is .transformed
? = £(t,z,r,<j>) so that the resulting constant c. planes are parallel to
and moving in the direction of the planar incident shock, while the radial,
coordinate r is transformed n = n(t,z,r,<J>) to normalize the distance be-
tween the body and an outer boundary. The outer boundary is chosen so that
in the two regions of known conical flow, namely, near the right- and left-
hand end planes, it is a conical surface. Between these two regions, and in
each meridional plane, the outer boundary is composed of. a cubic .polynomial
that approximately-parallels the peripheral shock. In addition to the
shock-alignment transformations, the transformed longitudinal coordinate £.
is transformed y = y(O to cluster points (ref. 26) near the impingement- ..
point on .the-body of the transmitted incident shock since the flow in this
region is of paramount importance. Thus, including the' self-similar
property of the flow, the resulting independent variable transformation from
(t,z,r,<j>) tO'(T,y,n,C) ' . space i s . . . .

;y =

•CD.

where

- [z -

C /'
-Fl t (eg - 1]

[TTTTT^
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.r,*) = zmt - r cos <J> tan X
(equation of planes parallel to incident shock)

X = incident shock -inclination (see Fig. 2)

zm = velocity of left-hand boundary of computational
volume = .zmin/t (see Eq. (5)) ;

£c = value of £. about which points are to be clustered

maxiroum value of- t, . :

B = clustering parameter; concentration of points increases with 3

= z tan a (equation of the body)

a = cone half-angle

5 = equation of the outer boundary (discussed in the next section)
»• "

Applying this transformation to the three-dimensional, time-dependent Euler
equations yields the following partial differential equation in conservation-
law form: , , . .

UT •+ Ey + Fn + G^: + H = 0 -; (2)

where

U=U*

F = ntu* + nzE* + nrF*
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r = -r(sin <)> tan X)/t £, = Num'

nz = -rb -'n(rob ' rb )/Crob " V nz = 'Num
Z • Z • Z . Z

n • . . :

nr = l/Oob - rb) V = Num

-• n ' -
'V - n' = Num ;

'* . . . . n

( ' •' '
Num implies that; the partial derivative must be obtained numerically since
the function rob(t,z,(j)) is not known analytically.' .The calculation of the
partial derivatives of r^ are discussed in the next section.

In Eq. (2), p represents the pressure; p-, the density; u, v, and w,
the velocity components in the z, r, and <|> directions; and e, the total
energy per unit volume. The pressure, density, and velocity are related to •
the energy for an ideal gas by the following equation: • •'

e = p/(y - 1) + p(u2 + v2'+ w2)/2 (3)

The transformed,- time-dependent Euler equations are hyperbolic with
respect to T and can be solved in an iterative fashion (e.g., at T = 1.0)
using an explicit, finite-difference scheme. . Because of the self-similar
transformation, the': UT term in EqV (2) approaches zerp as the integration
proceeds with respect to T and results in a converged solution for large
T or after a large number of iterations .at . T = 1.0. ;

BOUNDARY AND INITIAL CONDITIONS

The transformation given by Eq. (1) results in the computational grid
shown in Fig. 3. At.the extremities of this computational volume, the
correct boundary conditions must be applied. On the surface of the cone, the
tangency condition is satisfied by using an Euler predictor/modified Euler
corrector with one-sided differences in the n-direction and imposing the
condition v = u tan a after the corrector. Since the numerical technique
is iterative with respect to the independent variable of integration, and we
are only interested in the converged solution and not the transient, the body
boundary condition is accurately simulated (refs. 9 and 27) by following this
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procedure. At the 0° and 180° planes of symmetry, the "reflection
principle" is applied using the conservative variables. Rather than use
image planes to implement this boundary condition, the finite-difference
scheme is modified (discussed briefly in the next section).

It is important to ensure that the permeable boundaries of the computa-
tional volume be hyperbolic (see ref. 25), i.e., the flow through these
boundaries must be supersonic with respect to the self-similar coordinates.
If this condition is satisfied, and the flow variables along such
boundaries are known, then the associated grid points can be initialized
using the known flow quantities and held fixed during the entire integration
procedure. For the three-dimensional problem, this requires that zm^n
(the distance along the z axis to the interaction of the left-hand
boundary plane at t = 1) lie to the left of the sonic line, zmax lie to
the right of the incident shock, and the outer boundary encompass the
peripheral shock structure (Fig. 3). The position of zm^n, zmax, and the
outer boundary depend on the conical flow at the end planes.

To determine the flow at the right- and left-hand boundaries (regions 2
and 4, respectively, in Fig. 2), an existing three-dimensional, supersonic
flow field code (ref. 28) (TDSCT) was employed. Given the vehicle Mach
number Mv, angle of attack a, cone half-angle a, and ratio of specific
heats Y, the TDSCT program, which treats the bow shock as a sharp dis-
continuity, is used to generate the conical flow field at the right-hand
boundary. In addition, given the incident shock Mach number M^ and its
inclination V, the conditions behind the incident shock or the new free
stream conditions M3 and a3 can easily be found using the normal shock =
relations:

q^ = M^a^; velocity of incident shock with respect to still air

qi2 = ̂ ll1 "C(-Y " 1)Mi2 + 2]/t(Y * l)Mi2] I ̂ velocity of air .
behind incident shock with respect to still air

PS = PI(Y + i)M^2 I(Y - i)M^2 + 2]
p3 = t), F2vM^ - fv - 111/fv + 11 . / (4)

.= /YP3/P3

The velocity of the gas in region 3, which -is a function of the velocity in
region 1, is given in Table 1. The Mach number and flow direction are given
b y • ' • . , . . . .

and

M3 =

cx3 =
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These conditions are then used by the TDSCT code to generate the conical flow
field at the left-hand boundary.

For the positive values of A considered, z
m^n (which must lie to the

left of the sonic line) is determined, by -the flow at the body'in the 180°' -' v

plane, and its location can be found from

zmin < <\ - a4b
)(1" tan ° tan \

where q^ is the velocity and a, is the speed of sound at the body in
b b ' '

that plane. The location of zmax depends on the position of the incident
shock at time t = 1. The distance Zis (Fig. 3) is given by

zis = qis cos K/cos x

where qis is given in Table 1 and K = A + tan"1(uis/w. ). Since z^s is
known, zmax is selected to ensure that there is a sufficient number of
longitudinal grid points to capture the Mach stem in the 0° plane.

The data describing the two conical flow solutions generated by the
TDSCT program, in addition to the state variables, include the shock .position
rs and the two shock slopes 8rs/3z and '3rs/3<J>, .which are used in defining
the outer boundary. The position of the outer boundary near the end planes,
is chosen so that in both the meridional and longitudinal directions there is
an equal number of grid points between the conical bow shocks and it,": thus
imposing a condition that rol>^Tob = rs<|/rs!

In the longitudinal direction near the end planes, the outer boundary is
composed of conical rays from the vertex and cubic polynomials in between
(Fig. 3). In the 0° plane, for example, the outer boundary is composed of a
conical ray that extends from zmin to zcbi. followed by a cubic
polynomial to zĉ £, and finally another conical ray to zmax. At zcbi and
zcbf> both rojj and rojj are continuous. Only the four constants zcfciz
and zcb£ for the 0° plane and zcti and zctf for the 180° plane need be

specified. A simple linear interpolation between the bottom and top values
is used for the analogous parameters in the remaining meridional planes. In
some of the examples presented later, zctf and zcbi were set equal to
Zis based on the shock patterns of previously computed test cases.

Equation (2) requires that rQb , ro^ , and
 rob.i. ^e ̂ nown- For the

t . z <J> .
conical portion of the outer boundary, these functions are easily determined
from the known shape of the conical bow shocks (rot, = 0). However, it is

slightly more difficult to determine these functions for the nonconical
portion.
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In a- given meridional plane, the cubic can be written as

. f(O = a

where ' .
Cj = value of £ for z^ '

,C2 = value of C for

and

a = rob1
/t

b = r, /(l + r, cos <(> tan X)' = fob ob Cizi zi . ••: ..--. l,

x =.

d = 2(y - x)/(C2 -

C = X -
-' -J- •' i, i • - . " - . '

The quantities rob and rob are given by

and :

rob = tfcc_/(l - tfc?r) "•:.-... :- " C9)ODz > z ?- . .

where f . = 9f/3? and ''ct','4Z, and' c;̂
1 are defined in Eq. (2)/; ! .•

Since the circumferential variation of the quantities a, b, c, and d
in Eq. (7) is not known, Yob* must be computed numerically. This is easily

' - . T • »

accomplished using the following expression and noting that robA is zero at
the planes of symmetry: , . .. . • . . ; . .

: ;:''"'•/"•" '(10)

:1120



~ h ,  ~ q .  (10). rob and . .  az/ac' . are evaluated numerically using ,a second- 
t s 

order, central-difference formula. 

. With the computational volume established and the geometrical deriva- 
tives defined, the flow variables at the nodes can be initialized. Grid 
points that fall in region 1, i.e., between the original bow shock and the 
incident shock, are assigned values equal to the original free stream. For 
the cases considered here, pl and PI are set equal to 1.0, which implies 

. . 
that ql = M,,G The individual velocity components for region 1 as a 

function of a and $I are given in Table 2. The conditions in region 3, 
i.e., behind the incident shock and above tte new bow shock, are given by 
Eq. (4), while the velocity components of q3 are also presented in Table 2. 
Between ti, , and below the original bow shock, the right-side 
conical flow v:~:eSm~egion 2) are assigned, while between Zmin and Zis, 
and below the new bow shock, the left-side conical flow values (region 4) are 
assigned. 

To initiate the calculation, the integration stepsize At must be 
specified. Using a one-dimensional, amplification matrix, stability 
analysis (ref. 29) a governing stepsize for AT relative to the p ,  n, and 6 
directions can be found as follows: 

where CN is the Courant number and is usually set equal to 1.0. For the 
calculation t o  be stable, the minimum of the stepsizes in Eqs. (11) is used: 

During a typical calculation, AT is recomputed every 50 iterations, and it 
is generally Eq. (llb) evaluated at left-hand plane at the top (( = 180°] of 
the outer boundary that governs the stepsize. 



FINITE-DIFFERENCE ALGORITHM

Equation (2) is solved iteratively at time T = 1.0 using the second-
order, honcentered, finite-difference scheme devised by MacCormack (ref. 30),
It has been demonstrated (refs. 9, 27, 31, and 32)--that this scheme can
accurately determine the correct strength and location of all 'disconr
tiriuities in the -flow as well as the continuous regions. The version" of. - . •
MacCormack's scheme'used here as applied to Eq. (2) is - '' ' . -. * .•. . -

AT
Av (Ei+l,j,k' " Ei,j,k)

n _ AAT i,j,k . , . (I3a)

2i,j,k i,j,

where

'>' . nH
» iAV» JAn, kA?)

Ei i k = E(Ui i k' nAT' UlJ' JAn»l>J,lv 1, J ,K

,iAy,- jAn, kAnJ, etc.

The term Dn . v is a fourth-order smoothing term in the y and n direc-
•*•» J » , •.

tions (which does not affect the accuracy of the algorithm) and is given by
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where dy and d-^ are constants that control the degree of smoothing and
and are usually assigned values on the order of 0.01. The intervals Ay,
An, and A£ depend on the number of grid points selected in each direction,
and the integration stepsize AT is defined in Eq. (12).

At the planes of symmetry, special differences for the Gr term of

Eq. (2) are required to apply the reflection principle since an image plane
is not used. The terms Gj, 62, 63, and 65 in Eq. (2) are odd functions
with respect to the planes of symmetry while G^ is an even function. In
the predictor Eq. (13a) at $' = 180° (k = KM in Fig. 3), the forward dif- •
ference of Gr, therefore, is replaced by

; ' . "V - f? CGi,j,KM-l * GM,KM) f°r Gl> -G2> G3' a«d G5

a n d , - . . . . - .• '

In the corrector Eq. (13b) at 4> = 0°(k = 1) , and the backward difference of
Ge is replaced by

• '. . . .i' for °i- G2- G'- "*
and . " • ' '

The geometric derivatives that are set equal to Num in Eq. (2) must be
evaluated numerically for reasons explained earlier. To dp this, the
following second-order, finite-difference formula is used:

8A
37= C£l

where
el = -3, e2 = 4, e3 = -l; forward one-sided difference

cl = 1, e2 = 6, e3 = -1; central difference

e = 3, e2 = -4, e3 = 1; backward one-sided difference
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NUMERICAL RESULTS

The experience gained in developing the two-dimensional shock-on-shock,'
flow field code (ref. 9) was invaluable and enabled a quick transition from
an interactive graphics code to a completely automated program for the three-
dimensional problem. During the course of the two-dimensional study, it was
realized that the computing time for the TDSOS problem would be lengthy. The
initial calculations bore this out. The computational grid for a typical
TDSOS case consisted of 46 points in the longitudinal (p) direction, 30
points in the radial (n) direction (8 of which were between the conical
shocks and the outer boundary), and 10 points in the meridional (£)
direction. A maximum of 500 iterations for the 13,800 points was required to
obtain a converged solution. The computing was carried out on a CDC 7600 and
required about 1 hr and 48 min of CPU time using the "initial coding."

The "initial coding" was a direct, logical extension of the FORTRAN pro-
grams that had been written for a serial machine (such .as the IBM 360/67) to .
compute the two-dimensional problem. During the development of the TDSOS ',
program, it was recognized that the CDC 7600 has hardware, capabilities that
can, if properly exercised by the software, take advantage of a high degree
of both pipelining1 and overlapping.1 The critical part of the code,,there-
fore, was rewritten, taking extensive advantage of this capability.
Essentially, this revision consisted of two parts; first, a reorganization of
the calculations so that vector operations could be identified, and, second,
the introduction of a machine coded subroutine library (referred to as QUICK)
that optimizes the computing of vector arithmetic. The result of the revised
coding was to drastically reduce the computing time by a factor of 6 so that
a typical TDSOS calculation now takes about 18 min. A report outlining the.
details of QUICK is in preparation.

The results generated by the TDSOS computer code yield data that
describe the entire flow field. However, the distribution of the surface
flow variables in the vicinity of the impinging shock (or where the peak
pressure occurs) contain minor oscillations, characteristic of the shock-
capturing technique. Thus, to improve the prediction of the>peak surface
pressure from these data and at the same time check the TDSOS numerical
results, a simple analytic procedure was developed to: calculate the- local
flow at the transmitted shock impingement points. .This supplemental cal-
culation is performed in both the leeward plane . ($•= 0°), where for the en-
counter angles considered, only Mach reflection can occur, and the windward
plane, where either regular or Mach reflection of the transmitted incident
shock can occur.' , .

pipelining, it is meant, for example, that an adding unit can.be working
on several add operations at the same time.. By overlapping, it is meant that
an adding unit, a multiplying unit, and an incrementing unit can, all be
operating independently and simultaneously; .
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The shock impingement points (z/t)j_, labeled R and M in Fig. 4 are
determined from the numerical solution. The velocity of the impingement
point with respect to the surface of. the cone is then;given by "•' .A/-'>•**'

. . qi = (z/t)i/cos a

Knowing this velocity, the right-side conical flow solution (region 2), and
whether a Mach or regular reflection occurs (which can be determined for the
most .part from .flow field contour plots), the post impingement flow can be
determined.

For Mach reflection, the Rankine-Hugoriiot relations for a normal shock
are applied to easily obtain the postimpingement flow variables. For regular
reflection, the inclination of the transmitted shock 6a in Fig. 4 is re- "
quired and can be measured from the computer-generated contour plots. 'In '
combination with the regular shock reflection relations, it is used to de-
termine the flow behind and the inclination 6fc of the reflected transmitted
shock. This simple analytic calculation can thus be used to define the peak
pressure at the surface of the vehicle. . • .

To verify the TDSOS numerical procedure, one of the head-on encounters
experimentally tested by Merritt- and Aronson (ref. 20) was modeled, namely,
Mv = 3.10 and M^ = 1.39. The uniform preblast and postblast conditions re-
quired to generate the conical" flow, end-plane solutions are given in
Table 3; In Fig. 5, the numerical results^in the form of. a pressure contour
plot are superimposed on a- Schlieren photograph of the model during its- . -
flight. The agreement of the^computed and-observed shock structure is very r
good. An advantage of the numerical solution is that it can focus on the
flow in a given meridional plane, whereas the experiment that includes both
background and foreground flow cannot. Thus the structure of the experi- . .
mental transmitted incident shock in Fig. 5 is lost, but can be observed
from the numerical solution. ; .

The surface pressure distribution for the numerical solution of this ,
case and two others (see Table 3) for which experiments have been per- . .
formed (ref. 22) is shown in Fig. 6. The numerical data points are plotted :
to indicate the degree of clustering used and the amplitude of the -postcursor.
and precursor oscillations associated with the SCT. All three cases resulted
in a Mach reflection of the transmitted incident shock, and the
analytically determined postimpingement pressures or, in this case, peak
pressures"are shown and agree well with" the numerical data. .-•.-•

A comparison of the peak surface pressures determined from the TDSOS
code, experiment (ref. 22), and an approximate theory (ref. 20) is shown in
Fig. 7. The approximate theory assumed that the axial location of the
impingement point of the transmitted shock is the same as that of the inter-
section of the incident shock and original bow shock. This information is
then used in conjunction with the normal shock relations to calculate the
peak pressure'. The agreement, as shown in Fig. 7, between this theory and
theTDSOS results, is good mainly because the approximate theory's-underlying
assumption regarding the impingement point location is very good.
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The latest experiment (see ref. 23) to be performed on this problem
involved an 11.2° half-angle cone traveling at Mach 5 and was to have been
struck by a Mach 1.23 (p3/pi = 1.6) incident shock at encounter angles near
the critical angle which results in transition from Mach to regular reflec-
tion of the transmitted shock. An effort was made to predict some of the
flow fields prior to the actual experiment, and, toward this end, several
numerical solutions were obtained. The specific encounter angles, including
the post-blast, uniform flow conditions, are given in Table 3.

A sequence of density contour plots typical of the solutions obtained is
shown in Fig. 8 for the X = 24° encounter. The coalescence of constant
density lines, indicative of a discontinuity, depicts a wave pattern in the ,
<|> = 0° plane similar to that obtained, for the internal corner flow problem.
(ref. 27), i.e., the existence of two. triple points .joined by a corner
shock (also equivalent to the single tangent model of Smyrl (ref. 1)).
Emanating from both triple points are slip surfaces, shown as a weak
coalescence of lines, that eventually strike the body. The transmitted
incident shock is curved (concave with respect .to the vertex of the cone) due
to the gradients in the radial direction and strikes the body perpendicu-
larly. The flow in the region downstream of the transmitted shock is
compressed and, therefore, the peak pressure in this plane does not occur
directly behind the shock but farther downstream. In the <(> = 80° plane, the
transmitted shock becomes convex, and compression waves begin to originate
from the most curved region of the shock. With increasing <J>, these
compression waves coalesce and result in a "X-shock" formation. As <)> in-
creases further, the small Mach stem of the X-shock disappears and the
transmitted incident shock, which is again concave, reflects regularly from
the surface of the cone. .

Pressure contours of the flow in the windward and leeward planes for
the remaining encounter angles are shown in Fig.. 9. For X = 0°, 10°, and
19°, Mach reflection of the transmitted shock in the windward .plane occurs,
while for X = 22°, 24°, 32°, and 40°, regular reflection occurs. Using only
the contour plots and for encounter angles near transition, it is difficult
to determine whether Mach or regular reflection occurs. But in combination
with the analytic technique described at the beginning of this section, the
guesswork is minimized.

Plots of the surface pressure distribution in the 0° and 18.0° planes
are shown in Fig. 10 for Mach reflection and Fig. 11 for regular reflection.;
The individual points are not plotted, but the degree of clustering (see
Fig. 6) is the same for all cases (£ = 5). The postimpingement pressures '
calculated from the analytic technique described earlier.faired in nicely
with the numerical data, and the peak pressures in the windward plane are
summarized in Table 4. Note that the peak pressure in the leeward plane
does not occur directly behind the impinging shock wave but is actually
equal to the quasisteady conical value. For the Mach reflection cases, the
pressure spike is much thinner than for the regular reflection cases
(compare Figs. 10 and 11). . .
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A comparison of the numerically predicted peak pressure as a function
of the encounter angle X with three approximate theories ((1) PRIMUS
(ref. 8) - Picatinny Arsenal, (2) MDAC. >(ref. 6) - McDonnell Douglas Astrô ;:-
nautics Co., and (3) MMC (see ref. 10) - Martin Marietta Corporation) and
experimental data is shown in Fig. 12. All three theories overpredict the
maximum peak surface pressure compared to the numerical results and the ex-
perimental data. The encounter angle for transition from Mach to regular re-
flection of the transmitted incident shock is different for each solution,
and it is difficult to determine from the experimental data what should be
the correct value of A. Both the first and second series of Holloman sled
test data are shown in this figure and appear to fall in the regular re-
flection regime (based on the numerical results). The three points plotted
for each encounter angle of the 1974 data represent pressure data from
probes at three different axial locations and are somewhat indicative of the
experimental scatter.

The last sequence of sled tests at Holloman (December, 1974, January.
1975) were concerned with angle-of-attack effects.. Prior to these tests
numerical solutions for a Mach 5 cone with a half-angle of 11.2° and at -5°
angle of attack were obtained for the three encounter angles of 18°, 22°, and
31° that were to be used in the experiment. The results of these calcula-
tions are shown in Figs. 13 and 14. Figure 13 shows the shock structure in
the 0° and 180° planes for the three encounter angles. Mach reflection of
the transmitted incident occurred for X = 18° and 22° while regular re-
flection occurred for X = 31°. Fig. 14 shows a pressure and 'density
contour plot of <J> = 140° for the X = 18° encounter. A small Mach stem
exists near the body, and a comparison of the two plots reveals a slip
surface emanating from the triple point of the "x - shock." The surface
pressure distribution in the 0° and 180° planes for all three encounter
angles is shown in Fig. 15. The effect of angle of attack is to yield a
maximum peak pressure of more than twice that of the zero angle of attack
case and also to increase the encounter angle for transition from Mach to
regular reflection.

CONCLUDING REMARKS

The procedure developed to model the three-dimensional, unsteady, shock-
on-shock problem accurately predicts the complicated interactive flow field,
including the structure of the resulting shock pattern and the variation of
the surface flow variables. The results obtained verify the early models
for the shock structure suggested by Smyrl as did later experiments.
Predicted values of the peak pressure in the windward plane for various en-
counter angles agree fairly well with existing experimental results and, in
conjunction with the remaining flow field data, should provide the vehicle
.designer with an abundance of information. Finally, it is believed that,
based on the results of these numerical solutions and the latest experi-
mental data, the concern originally generated by the large peak pressures
predicted by approximate techniques is somewhat unwarranted.
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Table 1 Cartesian velocity components (see Fig. 2)
of regions 1 and 3, and the^incident shock with
respect to the cone (q. =u.i +w.i )

J J x J z

2_ _ "j wj •. .
1 qjSin a qjcos a

3 q^in a -q. sin X q^os a +q. cos X
2 • 12

q.sin a -q. sin X q.cos a +q. cos X
1 11 11

is

Table 2 Cylindrical velocity components of regions
3 with respect to the cone

(q. = U.iz

Uj

1 q cos a -q, sin a cos <J> q. sin a sin

3 q. cos «3 -q3 sin a3 cos <>» q3 sin a3 sin



Table 3 Uniform flow conditions in regions 1 and 3
for computational cases

MV = M, .,

. 3.10 0.0 9

3.10 0.0 9

3.12 0.0 9

5.00 0.0 11

a Mi X

.0 1.3? 0.0

.0 1.61 0.0

.0 2.07 0.0

.2 1.23 0.0

10.0
t "

. 19.0

22.0

24.0

32.0

40.0

Table 4 Peak surface pressure:
a = 11.2° and M^ = 1.230563; $

X Pp/Pl

Mach reflection:

0.0 4.61

10.0 5.91

19.0 7.72

,(z/t)i ea

7.337

7.546

7.806

M3

3.27484

3.32252

3.36277

4.99344

4.98882

4.97685

4.97125

4.96709

4.94703

4.92180

Mv = 5,
= 180°,

6b

°3

0.0

0.0

0.0

.0.0

-0.64850 .;,

-1.21885

-1.40404

-1.52577 -
f

-1.99609

-2.43389

a = 0°,
t = 1.0

\

Regular reflection:

22.0 6.85

•: 24.0 6.66

32.0 6.57

40.0 6.55

7.913 45.3

7.999 43.5

8.398 36.5

8.929 30.0

54.3

48.2

34.8

26.4

0.99758

1 . 10434

1.45522

1.87248
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(a) Preinteraction.
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(b) Postinteraction.

Figure 1.- Preinteraction and postinteraction wave patterns for the
three-dimensional shock-on-shock problem.
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SHOCK

Figure 2.- Coordinate system.
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Figure 3.- Computational volume.
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Figure 4.- Analytic calculation for regular or Mach reflection of
transmitted incident shock at the body.

1.1-33



Figure 5.- Comparison of numerical solution with experiment for head-on
encounter, M = 3.1, ct = 0°, a = 9°, M. = 1.39, X = 0°.
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Figure 6.- Surface pressure distribution for head-on encounters;
' MV = 3.1, a = Q°, a = 9°, A = 0*. '
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Figure 7.- Variation of peak surface pressure with incident shock Mach
number for head-on encounters; M =3.1, <x=0°, o = 9°, X = 0°.
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Figure 8.- Density contours in all meridional computational planes for an
oblique encounter; My = 5.0, a = 0°, a = 11.2°, Mi = 1.23, X = 24°.

(d) X = 22d

(b) \ = 10°

(c) X = 19°.

(e) A = 32

(f) X = 40°.

Figure 9.- Pressure contours of windward and leeward computational planes
for oblique encounters; Mv = 5.0, a = 0°, a = 11.2°, M^ = 1.23.-
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Figure 10.- Surface pressure distribution in leeward (<f> = 0°) and
windward ($ = 180°) planes (Mach reflection); My = 5, a = 0°,
o = 11.2°, MI = 1.23056 (p.5/Pi = 1.6), t = 1.0.
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Figure 11.- Surface pressure distribution in leeward (<J> = 0°) and
windward (<|> = 180°) planes (Regular reflection); My = 5, o = 0°,
a = 11.2°, Mi = 1.23056 (Pj/Pj = 1-6), t = 1.0.
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Figure 12.- Comparison of peak surface pressure vs encounter angle
with experiment and an approximate theory; My = 5, a = Oe

a = 11.2 = 1.23056 (PS/PI = 1.6), t = 1.0.
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(a) X -' 18°

(b) X = 220

(c) X = 31°.

Figure 13.- Shock structure in windward and leeward planes;
My = 5, a = 11.2°, a = -5°, Mj = 1.54.
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(a) Density contour.

(b) Pressure contour.
Figure 14.- Typical density and pressure contours of a meridional

computational plane; Mv = 5, a = -5°, a =11 .2° , M^ = 1.54,
X = 18°, <(. = 140°.
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15.- Surface pressure distribution in leeward (<j> = 0°)
windward (<j> = 180°) planes; Mv = 5, a = -5°, a = 11.2°,

= 1.54 (p3/Pl = 2.6) , t = 1.0
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